Öffentlicher Katalog
Transparenter Blick auf alles, was heute implementiert ist, geordnet nach Domäne und mit dokumentierten Referenzen.
Domänen
64
Sektionen
298
Features
1748
Einträge mit unklaren Referenzen wurden aus Genauigkeitsgründen entfernt.
Feature-Index
Suche oder springe direkt in eine Domäne, um den vollen Katalog zu sehen.
Zeige 1748 von 1748 Features
Domänen
64
Sektionen
298
Features
1748
Suche
Zur Domäne springen
MMSMode
N - Current active mode (0-7)
CPUComponent_FeedForward.cpp:1133
MMSStateInfluence
N - State → mode selection weight
CPUComponent_FeedForward.cpp:1150
MMSInputInfluence
N - Input → mode selection weight
CPUComponent_FeedForward.cpp:1150
MMSDecay
N - Per-neuron state decay rate
CPUComponent_FeedForward.cpp:1234
MMSEta
N - Learning rate multiplier
CPUComponent_FeedForward.cpp:1236
LSTM (4-gate)
Input, Forget, Output, Cell gates with peephole connections
CPUComponent_FeedForward.cpp:300-517
GRU (2-gate)
Update, Reset gates (~25% faster than LSTM)
CPUComponent_FeedForward.cpp:529-790
Gated Elman
Classic RNN with learnable gating factors
CPUComponent.cpp:4789-5517
Classic Elman
Simple recurrent with pre-activation buffer
CPUComponent.cpp:5518-5810
Per-Gate RMGA
Neuromodulator integration for each gate independently
CPUComponent_FeedForward.cpp:413-432
Gate-Specific Gains
Separate DA/NE/ACh/5-HT coefficients per gate
CPUComponent_FeedForward.cpp:420-428
Peephole Connections
Cell state directly influences gates
CPUComponent_FeedForward.cpp:380-395
TS-ReLU DZ-Asym
Per-neuron asymmetric with deadzones, hysteresis, caps
CPUComponent.cpp:4504-4630
PReLU
Per-neuron learnable negative slope (alpha evolved)
CPUComponent.cpp:4660-4688
Swish
x × sigmoid(x)
CPUComponent.cpp:4697-4702
GELU
Gaussian Error Linear Unit
CPUComponent.cpp:4703-4710
Mish
x × tanh(softplus(x))
CPUComponent.cpp:4711-4718
ELU
Exponential Linear Unit
CPUComponent.cpp:4683-4690
SELU
Scaled ELU with self-normalization
CPUComponent.cpp:4691-4695
Softplus
log(1 + exp(x))
CPUComponent.cpp:4720
Softsign
x / (1 + - x - )
CPUComponent.cpp:4722
Hard Sigmoid
Piecewise linear sigmoid approximation
CPUComponent.cpp:4725
Hard Swish
x × hard_sigmoid(x)
CPUComponent.cpp:4728
1-bit Binary
Sign-only weights with threshold logic
CPUComponent_FeedForward.cpp:1079-1095
2-bit Ternary
{-1, 0, +1} with evolved thresholds
CPUComponent_FeedForward.cpp:1097-1110
4-bit Quantized
16 levels with per-neuron scale
CPUComponent_FeedForward.cpp:126-140
8-bit Quantized
256 levels for high-precision
CPUComponent_FeedForward.cpp:141-155
Per-Neuron Scales
Evolved quantization parameters
CPUComponent_FeedForward.cpp:942-944
STDP Scale Evolution
Scales adapt via spike-timing rules
NFGCSQuantGuardTests.cpp:48-92
Bitplane Encoding
Efficient binary input representation
CPUComponent_FeedForward.cpp:128
GPU Bit-Level Decode
Shader unpacks quantized weights
FeedForwardBatch2D.usf:245-280
Dynamic Precision
Runtime bit-width selection per layer
CPUComponent_FeedForward.cpp:156-180
Block Crossover
Fixed-size blocks from each parent
CPUComponent_Crossover.cpp:60-92
Uniform Per-Neuron
50/50 per neuron random selection
CPUComponent_Crossover.cpp:94-100
Multi-Point
N random cut points (N=2-5)
CPUComponent_Crossover.cpp:101-130
Weight Averaging
Arithmetic mean of parent weights
CPUComponent_Crossover.cpp:152-168
Blended
α×P1 + (1-α)×P2 with random α
CPUComponent_Crossover.cpp:170-195
LSTM-Specific
Separate handling per gate
CPUComponent.cpp:1800-1950
PReLU Alpha
Per-neuron slope inheritance
CPUComponent.cpp:1120-1225
Coherent Neuron
All weights for a neuron from same parent
NFGCrossoverUtils.cpp:89-145
Layer-Wise
Entire layers from alternating parents
CPUComponent_Crossover.cpp:200-230
Fitness-Weighted
Interpolation biased by fitness ratio
CPUComponent_Crossover.cpp:232-260
Elite Thawing
Frozen elite weights gradually unfrozen
CPUComponent_Crossover.cpp:262-290
Strategy
Description - Source
Gaussian Additive
value += N(0,σ) × rate
CPUComponent.cpp:6378-6388
Adaptive Per-Layer Sigma
Learnable step-size per layer
CPUComponent.cpp:6389-6422
Success-Based Adaptation
1/5th rule sigma adjustment
MutationComponent.cpp:145-180
Sinusoidal Control
Periodic exploration cycles
MutationComponent.cpp:182-210
Cauchy Mutation
Heavy-tailed for large jumps
CPUComponent.cpp:6424-6445
Polynomial Mutation
Bounded with controllable distribution
CPUComponent.cpp:6447-6470
Uniform Perturbation
±δ uniform random
CPUComponent.cpp:6472-6485
Sparse Mutation
Only K% of weights mutated
CPUComponent.cpp:6487-6510
Layer-Specific Rates
Different σ per layer depth
CPUComponent.cpp:6512-6540
Momentum Mutation
Velocity-based directed mutation
CPUComponent.cpp:6542-6580
Hall of Fittest
Elite archive (64-256 individuals)
CPUComponent.cpp:5955-6290
Async Child Pool
Background thread child generation
CPUComponent.cpp:404-518, 2202-3370
CMA-ES Integration
Covariance matrix adaptation
CPUComponent.cpp:5924-6000
Fitness-Ranked Selection
Tournament from elite archive
CPUComponent.cpp:6501-6533
Age-Based Culling
Remove stale individuals
HallOfFittestComponent.cpp:280-320
Diversity Maintenance
Novelty bonus in selection
CPUComponent.cpp:6535-6580
Speciation
Cluster-based niche protection
CPUComponent.cpp:6582-6640
Shared Memory Tiling
16×16 tile matrix multiply
FeedForwardBatch2D.usf:180-240
Wave Intrinsics
WaveActiveSum for reductions
FeedForwardBatch2D.usf:300-340
Half-Precision Path
FP16 accumulation option
FeedForwardBatch2D.usf:85-120
Quantized Weight Decode
On-the-fly 1/2/4/8-bit unpack
FeedForwardBatch2D.usf:245-280
Kernel
Description - Source
CMAESInitCS
Initialize mean, covariance, paths
CMAES.usf:39-88
CMAESGenerateSamplesCS
Box-Muller sampling
CMAES.usf:134-251
CMAESEvaluateFitnessCS
Parallel fitness computation
CMAES.usf:253-320
CMAESSortCS
Bitonic sort by fitness
CMAES.usf:322-398
CMAESCovUpdate2DCS
Full covariance update
CMAES.usf:401-442
CMAESUpdateMeanCS
Weighted recombination
CMAES.usf:444-490
CMAESUpdatePathsCS
Evolution path update
CMAES.usf:492-542
CMAESEigenDecompositionCS
B×D×B^T decomposition
CMAES.usf:545-606
CMAESBuildInvSqrtCCS
C^(-1/2) computation
CMAES.usf:634-661
CMAESLowRankUpdateCS
Rank-μ approximation
CMAES.usf:663-720
CMAESDeflationCS
Multi-modal niching
CMAES.usf:722-780
CMAESQueueNudgeCS
Diversity maintenance
CMAES.usf:782-840
CMAESBoundConstraintCS
Box constraint handling
CMAES.usf:842-890
CMAESStepSizeCS
σ adaptation (CSA)
CMAES.usf:892-940
CMAESRestartCS
IPOP/BIPOP restart
CMAES.usf:942-960
UpdateSTDPCS
Spike-timing trace update
STDP.usf:18-42
ApplySTDPCS
Weight/bias updates
STDP.usf:75-150+
PreSynapticTrace
Exponential decay + spike
STDP.usf:25-32
PostSynapticTrace
Activity-dependent trace
STDP.usf:33-40
NeuromodulatorGating
DA/NE/ACh/5-HT scaling
STDP.usf:85-110
EligibilityTrace
Temporal credit assignment
STDP.usf:112-135
WeightBounding
Min/max constraint
STDP.usf:140-148
Subsystem
Description - Source
Triple Buffering
Async GPU/CPU overlap
ComputeShadersComponent.cpp:1200-1280
Ring Buffer Histories
Temporal data storage
ComputeShadersComponent.cpp:1282-1350
Structured Buffers
Type-safe GPU data
ComputeShadersComponent.cpp:1352-1420
RDG Integration
Render Dependency Graph
ComputeShadersComponent.cpp:1422-1500
Async Readback
Non-blocking GPU→CPU
ComputeShadersComponent.cpp:1502-1580
Signal
Computation - Effect - Source
Dopamine (DA)
Reward - RewardEWMA - Reinforces positive outcomes
NeuromodulatorComputer.cpp:102-107
Serotonin (5-HT)
0.5×Volatility + 0.3×NegativeRatio + 0.2×Drawdown - Dampens during risk
NeuromodulatorComputer.cpp:109-138
Noradrenaline (NE)
max(RewardSurprise, HiddenSurprise_L2) - Enhances on surprise
NeuromodulatorComputer.cpp:140-157
Acetylcholine (ACh)
ContextShift + 0.5×InputActivity - Focus on context change
NeuromodulatorComputer.cpp:159-192
Z-Score Normalization
Welford's online algorithm, ±3σ clipping
NeuromodulatorComputer.cpp:194-203
DA-5HT Decorrelation
Linear regression removes correlation
NeuromodulatorComputer.cpp:217-225
Spiking Dynamics
Spike threshold, burst amplitude, refractory
NeuromodulatorComputer.cpp:227-244
Hysteresis Gating
Prevents oscillation, ε=0.02
NeuromodulatorComputer.cpp:246-253
Temporal Smoothing
EMA with configurable tau
NeuromodulatorComputer.cpp:255-270
Feature
Formula - Source
Multi-Modulator RMGA
Gain = 1.0 + g_DA×DA + g_NE×NE + g_ACh×ACh + g_5HT×5HT
NeuromodulatorComputer.cpp:90-94
Per-Gate Coefficients
Each LSTM/GRU gate has separate g_* values
CPUComponent_FeedForward.cpp:420-428
Eligibility-Weighted
Temporal credit via eligibility traces
MultiModulatorRMGA.ush:126-179
Hybrid Spiking
Membrane potential + spike generation
rmga_modulation.ush:104-156
GPU Multi-Modulator
Shader implementation for batch
MultiModulatorRMGA.ush:31-58
Per-Agent Modulators
Independent state per agent
MultiModulatorRMGA.ush:60-85
Async Update
Non-blocking modulator compute
MultiModulatorRMGA.ush:87-102
Unified Interface
Legacy + new modulator support
UnifiedModulatorComputer.cpp:1-200
Mode
Description - Formula - Source
Disabled
No attention - Pass-through
NFGAttentionProcessor.cpp:85
Layer
Per-neuron gate from magnitudes - Gate = \ - Act\ - / Sum
NFGAttentionProcessor.cpp:87-112
Temporal
Multi-head Q/K/V multiplicative - Softmax(Q·K/√d) × V
NFGAttentionProcessor.cpp:115-336
TemporalAdditive
Residual attention (RECOMMENDED) - 1.0 + (Gate-0.5)×2×Scale
NFGAttentionProcessor.cpp:339-354
Half-Precision
FP16 accumulation for speed
AttentionFusedCS.usf:84-120
Wave Intrinsics
WaveActiveSum for softmax
AttentionFusedCS.usf:180-220
Triple Buffering
Async Q/K/V updates
AttentionFusedCS.usf:250-300
Scaled Dot-Product
Efficient attention kernel
AttentionFusedCS.usf:302-350
Multi-Head Support
Up to 8 attention heads
NFGAttentionGPU.cpp:120-180
Timescale
Alpha (EMA) - Effective Range - Use Case
Instant
0.0 - Current frame - Immediate response
Fast
0.5 - ~16ms - Reflexes
1 Second
0.9 - ~1s - Short-term
5 Seconds
0.95 - ~5s - Working memory
10 Seconds
0.99 - ~10s - Recent context
30 Seconds
0.995 - ~30s - Episode context
1 Minute
0.999 - ~60s - Extended memory
3 Minutes
0.9999 - ~180s - Long-term patterns
Category
Neurons - Purpose - Source
Activation Memory
Level, Trend, Stability - Activity patterns
TemporalMemoryCS.usf:174-200
Network Uncertainty
Confidence, Saturation, Exploration - Learning state
TemporalMemoryCS.usf:201-220
Reward Dynamics
Cascade, Advantage, Momentum - Reward trends
TemporalMemoryCS.usf:221-240
Episode Context
Phase, Performance, Crisis - Episode state
TemporalMemoryCS.usf:241-260
WorldPredictor
ErrorBlend, SurpriseTrend - Prediction quality
TemporalMemoryCS.usf:252-264
Feature
Formula - Source
Pre-Synaptic Trace
τ_pre × dTrace/dt = -Trace + δ(spike)
NFGNeuroDynamicsProvider.cpp:567-569
Post-Synaptic Trace
τ_post × dTrace/dt = -Trace + δ(spike)
NFGNeuroDynamicsProvider.cpp:598-599
LTP (Potentiation)
Δw = η_LTP × Pre_trace × δ(post_spike)
NFGNeuroDynamicsProvider.cpp:606
LTD (Depression)
Δw = -η_LTD × Post_trace × δ(pre_spike)
NFGNeuroDynamicsProvider.cpp:606
Weight Update
w_new = w_old + DA × (LTP - LTD)
NFGNeuroDynamicsProvider.cpp:610-620
Factor
Computation - Source
RewardPotFactor
1.0 + Scale × max(0, Reward)
NFGNeuroDynamicsProvider.cpp:510
RewardDepFactor
1.0 + Scale × max(0, -Reward)
NFGNeuroDynamicsProvider.cpp:511
DopamineFactor
1.0 + Scale × Dopamine
NFGNeuroDynamicsProvider.cpp:533
SerotoninFactor
1.0 - Scale × Serotonin
NFGNeuroDynamicsProvider.cpp:534
EffectiveLTP
LTPRate × RewardPotFactor × DopamineFactor
NFGNeuroDynamicsProvider.cpp:540
EffectiveLTD
LTDRate × RewardDepFactor × SerotoninFactor
NFGNeuroDynamicsProvider.cpp:541
Prediction Error
Observation - Prediction from top-down
NFGNeuroDynamicsProvider.cpp:936-1018
Running Error Mean
EMA of - error - for baseline
NFGNeuroDynamicsProvider.cpp:620-624
Surprise Detection
Boost when - error - > threshold × mean
NFGNeuroDynamicsProvider.cpp:626-629
Top-Down Weights
Auto-transposed or dedicated
NFGNeuroDynamicsProvider.cpp:840-889
Error-Driven Learning
Prediction error modulates STDP
NFGNeuroDynamicsProvider.cpp:630-660
Hierarchical Prediction
Each layer predicts layer below
NFGNeuroDynamicsProvider.cpp:890-935
Experience Buffer
Circular buffer (activations, rewards, frame IDs)
NFGNeuroDynamicsProvider.h:42-59
Priority Sampling
High- - reward - frames prioritized
NFGNeuroDynamicsProvider.cpp:1209-1244
Sync Replay
Blocking replay with full STDP pass
NFGNeuroDynamicsProvider.cpp:1283-1350
Async Replay
Incremental replay over frames
NFGNeuroDynamicsProvider.cpp:1352-1423
Replay Pass Signal
Global flag notifies providers
NFGNeuroDynamicsProvider.cpp:121-126
Replay Batch Size
Configurable experiences per cycle
NFGNeuroDynamicsProvider.cpp:1246-1280
Recency Weighting
Recent experiences prioritized
NFGNeuroDynamicsProvider.cpp:1200-1208
Threshold Crossing
Spike when activation > threshold
NFGNeuroDynamicsProvider.cpp:480-495
Refractory Period
Minimum inter-spike interval
NFGNeuroDynamicsProvider.cpp:497-510
Adaptive Threshold
Threshold increases after spike
NFGNeuroDynamicsProvider.cpp:512-525
Stochastic Spiking
Probabilistic based on activation
NFGNeuroDynamicsProvider.cpp:527-545
Hidden State Rollout
H' = tanh(W_h × H + W_a × A + b)
WorldPredictorWhatIf.usf:1-262
Confidence Scoring
1/(1+RMSE) for stability
WorldPredictorWhatIf.usf:243-247
Danger Scoring
Designated danger neurons + threshold
WorldPredictorWhatIf.usf:188-238
Multi-Step Rollout
Ping-pong buffers for iteration
WorldPredictorWhatIf.usf:117-186
Best Action Selection
Score = Confidence - DangerScore
NFGWorldPredictorComponent.h:107-108
Parallel Action Queries
Multiple actions evaluated simultaneously
WorldPredictorWhatIf.usf:45-80
State Caching
Reuse common prefixes
WorldPredictorWhatIf.usf:82-115
Gradient Estimation
Finite difference gradients
WorldPredictorActionVariants.usf:80-120
Action-Effect Error
Delta prediction: - actual - predicted
WorldPredictorActionEffectError.usf:1-83
What-If Blending
Softmax-weighted correction
WorldPredictorActionCorrection.usf:1-100+
Action Context
N-frame action history as input
WorldPredictorActionContext.usf:1-108
Horizon Weighting
Exponential decay by horizon
WorldPredictorMultiTimescale.usf:45-80
Cross-Entropy Loss
Token prediction loss
WorldPredictorTokenCE.usf:1-120
Sequence Masking
Causal masking for AR
WorldPredictorTokenCE.usf:40-70
Position Encoding
Learned positional embeddings
WorldPredictorTokenCE.usf:72-100
F0 (Pitch)
80-400 Hz - Fundamental frequency
NFGAudioCommSynthComponent.cpp:486-495
Voicing
0.0-1.0 - Voiced/unvoiced ratio
NFGAudioCommSynthComponent.cpp:497-505
F1, F2, F3
200-3500 Hz - Formant frequencies
NFGAudioCommSynthComponent.cpp:416-440
B1, B2, B3
50-400 Hz - Formant bandwidths
NFGAudioCommSynthComponent.cpp:442-458
Aspiration
0.0-1.0 - Breathiness
NFGAudioCommSynthComponent.cpp:545-550
Tremolo Rate
0-10 Hz - Vibrato frequency
NFGAudioCommSynthComponent.cpp:507-515
Tremolo Depth
0.0-0.3 - Vibrato amplitude
NFGAudioCommSynthComponent.cpp:517-525
Jitter
0.0-0.05 - Pitch irregularity
NFGAudioCommSynthComponent.cpp:527-535
Shimmer
0.0-0.05 - Amplitude irregularity
NFGAudioCommSynthComponent.cpp:537-545
Nasality
0.0-1.0 - Nasal resonance
NFGAudioCommSynthComponent.cpp:547-555
LF Model
Liljencrants-Fant glottal pulse
NFGAudioCommSynthComponent.cpp:486-500
Open Quotient
Glottal open phase ratio
NFGAudioCommSynthComponent.cpp:502-510
Speed Quotient
Opening/closing asymmetry
NFGAudioCommSynthComponent.cpp:512-520
Return Phase
Pulse return coefficient
NFGAudioCommSynthComponent.cpp:522-530
3-Band IIR
F1, F2, F3 resonators
NFGAudioCommSynthComponent.cpp:416-458
Parallel Config
Summed formant outputs
NFGAudioCommSynthComponent.cpp:460-475
Cascade Config
Serial formant chain
NFGAudioCommSynthComponent.cpp:477-485
Anti-Formants
Nasal zero modeling
NFGAudioCommSynthComponent.cpp:380-400
Phoneme
Formants (F1/F2/F3) - Source
/a/
730/1090/2440
NFGAudioCommSynthComponent.cpp:357-360
/e/
530/1840/2480
NFGAudioCommSynthComponent.cpp:361-364
/i/
270/2290/3010
NFGAudioCommSynthComponent.cpp:365-368
/o/
570/840/2410
NFGAudioCommSynthComponent.cpp:369-372
/u/
300/870/2240
NFGAudioCommSynthComponent.cpp:373-376
/ə/ (schwa)
500/1500/2500
NFGAudioCommSynthComponent.cpp:377-379
/æ/
660/1720/2410
NFGAudioCommSynthComponent.cpp:380-382
/ʌ/
600/1190/2390
NFGAudioCommSynthComponent.cpp:383-385
Interpolated
Lerped F1/F2/F3
NFGAudioCommSynthComponent.cpp:387-400
Global Mean
Distance-weighted parameter averaging
NFGAudioCommWorldSubsystem.cpp:361-407
Nearest-K
K nearest neighbors aggregation
NFGAudioCommWorldSubsystem.cpp:441-502
Spatial Attenuation
Exponential distance falloff
NFGAudioCommSpeakerComponent.cpp:160-174
Voice Profiles
Per-agent 7-bias customization
NFGAudioCommSpeakerComponent.cpp:37-110
Emergent Protocol
Communication evolves through fitness
NFGAudioCommWorldSubsystem.cpp:504-560
Feature
Formula - Source
UCB Score
Exploit + C × √(ln(N)/n)
NFGMetaRegulatorComponent.cpp:72-113
Exploit Term
Mean contribution estimate
NFGMetaRegulatorComponent.cpp:80-90
Explore Term
Uncertainty bonus
NFGMetaRegulatorComponent.cpp:92-110
C Parameter
Exploration coefficient (√2)
NFGMetaRegulatorComponent.cpp:75
Semantic Clustering
Group outputs by name prefix
NFGMetaRegulatorComponent.cpp:406-567
Wildcard Matching
"Steering_*" matches all steering
NFGMetaRegulatorComponent.cpp:420-450
Auto-Discovery
Detect families from output names
NFGMetaRegulatorComponent.cpp:452-500
Family Budget
Per-family resource allocation
NFGMetaRegulatorComponent.cpp:502-567
Gain Intervention
Temporary gain modification
NFGMetaRegulatorComponent.cpp:815-900
Impact Measurement
Δfitness during intervention
NFGMetaRegulatorComponent.cpp:902-950
Contribution Tracking
Normalized delta measurement
NFGMetaRegulatorComponent.cpp:952-984
Rollback Support
Revert unsuccessful interventions
NFGMetaRegulatorComponent.cpp:986-1020
Softmax Budget
Temperature-scaled distribution
NFGMetaRegulatorComponent.cpp:678-759
Mutation Scale
Per-family mutation adaptation
NFGMetaRegulatorComponent.cpp:761-813
Input Gain
Per-family input sensitivity
NFGMetaRegulatorComponent.cpp:1056-1141
Curiosity Signal
Exploration boost for surprising
NFGMetaRegulatorComponent.cpp:954, 789-791
Progress Tracking
Per-family improvement history
NFGMetaRegulatorComponent.cpp:1143-1200
Layer Selection
1-2 hidden layers for projection
NFGMTDPComponent.cpp:728-777
Early Timescales
Layer 0 = fast (5-10%)
NFGMTDPComponent.cpp:214-220
Mid Timescales
Layer 1 = moderate (10-25%)
NFGMTDPComponent.cpp:221-223
GPU Contribution
Shader-based dot product
MTDP.ush:8-19
9 Crossover Methods
Block, Uniform, PerLayer, Average, etc.
NFGMTDPComponent.cpp:445-578
Output Coherence
All weights per output from same parent
NFGMTDPComponent.cpp:486-496
Weight Clamping
Bounded evolution (0.0001 to 5.0)
NFGMTDPComponent.cpp:854-867
Adaptive Mixing
Fitness-proportional parent blend
NFGMTDPComponent.cpp:580-620
Metric
Description - Source
NetworkActivityBalance
Activation distribution evenness
NFGFitnessComponent.cpp:180-200
PredictionErrorLoss
World prediction MSE
NFGFitnessComponent.cpp:202-220
TemporalCoherence
Output stability over time
NFGFitnessComponent.cpp:222-240
ExplorationBonus
Novel state visitation reward
NFGFitnessComponent.cpp:242-260
CuriosityReward
Prediction error as intrinsic reward
NFGFitnessComponent.cpp:262-280
WeightMagnitudePenalty
L2 regularization
NFGFitnessComponent.cpp:282-300
SpikeEfficiency
Information per spike
NFGFitnessComponent.cpp:302-320
MemoryUtilization
Temporal retention usage
NFGFitnessComponent.cpp:322-340
AttentionEfficiency
Attention gate effectiveness
NFGFitnessComponent.cpp:342-360
ModulatorBalance
DA/NE/ACh/5-HT equilibrium
NFGFitnessComponent.cpp:362-380
GradientHealth
Weight change stability
NFGFitnessComponent.cpp:382-400
SpecializationIndex
Neuron role differentiation
NFGFitnessComponent.cpp:402-420
InformationFlow
Layer-to-layer transfer
NFGFitnessComponent.cpp:422-440
AdaptiveComplexity
Appropriate model complexity
NFGFitnessComponent.cpp:442-460
RobustnessScore
Performance under noise
NFGFitnessComponent.cpp:462-480
GeneralizationProxy
Train/test divergence
NFGFitnessComponent.cpp:482-500
ConvergenceRate
Learning speed
NFGFitnessComponent.cpp:502-520
StabilityScore
Fitness variance
NFGFitnessComponent.cpp:522-540
Elite Archive
64-256 top individuals
HallOfFittestComponent.cpp:50-100
Fitness Ranking
Sorted by composite fitness
HallOfFittestComponent.cpp:102-150
Age Tracking
Generation stamps
HallOfFittestComponent.cpp:152-180
Diversity Bonus
Novelty-based selection
HallOfFittestComponent.cpp:182-220
Periodic Culling
Remove stale individuals
HallOfFittestComponent.cpp:222-260
Serialization
Checkpoint save/load
HallOfFittestComponent.cpp:262-320
Weighted Sum
Σ w_i × f_i
NFGFitnessComponent.cpp:550-580
Pareto Ranking
Non-dominated sorting
NFGFitnessComponent.cpp:582-620
Hypervolume
Coverage metric
NFGFitnessComponent.cpp:622-660
Scalarization
Configurable aggregation
NFGFitnessComponent.cpp:662-700
Config File
Purpose - Source
ArchitectureConfig.json
Network topology, MMS neurons, per-neuron modifiers
Config/ArchitectureConfig.json
EvolutionConfig.json
Mutation rates, crossover methods, parent selection
Config/EvolutionConfig.json
FitnessConfig.json
Fitness evaluation, reward weights, meta-regulation
Config/FitnessConfig.json
AttentionConfig.json
Temporal attention modes, heads, temporal windows
Config/AttentionConfig.json
BackendConfig.json
GPU/CPU selection, precision, quantization
Config/BackendConfig.json
NeuroDynamicsConfig.json
STDP, predictive coding, sleep consolidation
Config/NeuroDynamicsConfig.json
RMGAConfig.json
Reward-modulated gain, neuromodulators
Config/RMGAConfig.json
MTDPConfig.json
Multi-timescale decision projection
Config/MTDPConfig.json
CMAESConfig.json
CMA-ES evolution strategy parameters (172+)
Config/CMAESConfig.json
RNNConfig.json
RNN/LSTM/GRU configuration
Config/RNNConfig.json
OutputManagerConfig.json
Output layer configuration
Config/OutputManagerConfig.json
SensorsConfig.json
Sensor/input configuration
Config/SensorsConfig.json
WorldPredictorConfig.json
World model prediction settings
Config/WorldPredictorConfig.json
GameConfig.json
Game-specific parameters
Config/GameConfig.json
SerializeJSON
Complete model to JSON with weights/biases
NFGModelComponent_Serialization.cpp:17-200
Quantization Support
2-64 bit precision with emulated quantize-dequantize
NFGModelComponent_Serialization.cpp:42-157
Implicit Bias
Biases as +1 augmented weight column
NFGModelComponent_Serialization.cpp:160-162
Per-Neuron Scales
Individual scale factor per output (QuantPerNeuronScales)
NFGModelComponent_Serialization.cpp:100-105
Base64 Weights
QWeightsPacked_b64 for efficient storage
NFGModelComponent_Serialization.cpp:120-140
NeuroDynamics Params
STDP, predictive coding, sleep settings persistence
NFGModelComponent_Serialization.cpp:164-186
Hall of Fittest Persistence
Elite model archive with sorted ranking
HallOfFittestComponent.cpp:165-206
Architecture Hash
MD5 hash for model versioning/compatibility
IOManager.cpp:70-88
Pre-allocated Model Pool
Memory reserved before async load
FileIOManager.cpp:120-131
Async File I/O
Worker thread loads, game thread creates
FileIOManager.cpp:106-200+
Remote I/O
Cloud/server model upload/download
IOManager.cpp:30-60
CVar
Type - Purpose - Source
nfg.crossover.cpu_trace
int32 - Trace CPU child production
CPUComponentCVars.h:10
nfg.cpu.quant_dense
int32 - CPU quantized dense fast path
CPUComponentCVars.h:18
nfg.cpu.quant_lstm
int32 - CPU quantized LSTM fast path
CPUComponentCVars.h:20
nfg.attention.enable
int32 - -1=inherit, 0=off, 1=on
NFGAttentionCVars.cpp:7
nfg.attention.mode
int32 - 0-3 (Disabled/Layer/Temporal/TemporalAdditive)
NFGAttentionCVars.cpp:12
nfg.attention.heads
int32 - Override head count
NFGAttentionCVars.cpp:18
nfg.attention.use_gpu
int32 - -1=inherit, 0=CPU, 1=GPU
NFGAttentionCVars.cpp:35
nfg.hof.use_reward_for_ranking
int32 - Fitness vs reward ranking
HallOfFittestComponent.cpp:180
8 Weather States
Clear, Cloudy, Overcast, LightRain, HeavyRain, Thunderstorm, Snow, Fog
NFGWeatherStateMachine.cpp:40-80
Smooth Transitions
Interpolation over configurable duration (default 300s)
NFGWeatherStateMachine.cpp:120-180
Automatic Rules
Condition-based state changes with probability
NFGWeatherStateMachine.cpp:200-280
Weather Front Integration
Dynamic front-based state modifications
NFGWeatherStateMachine.cpp:300-350
Temperature
-50°C to +50°C - With lapse rate 0.0065°C/meter
NFGWeatherSimulationComponent.cpp:150-180
Humidity
0.0-1.0 - Location-dependent
NFGWeatherSimulationComponent.cpp:200-230
Pressure
95000-105000 Pa - Pressure cell simulation
NFGWeatherSimulationComponent.cpp:250-300
Wind
0-50 m/s - With turbulence and gusts
NFGWeatherSimulationComponent.cpp:320-380
Cloud Coverage
0.0-1.0 - Affects visibility
NFGWeatherStateMachine.cpp:90-110
4 Front Types
Cold, Warm, Occluded, Stationary
NFGWeatherFrontManager.cpp:50-100
Frontal Dynamics
Slope, vertical velocity, vorticity
NFGWeatherFrontManager.cpp:150-200
CAPE Calculation
Convective Available Potential Energy (0-5000+ J/kg)
NFGWeatherFrontManager.cpp:220-260
Precipitation
Based on lifting rate and moisture
NFGWeatherFrontManager.cpp:280-340
Front Lifespan
Decay over time (default 48 hours)
NFGWeatherFrontManager.cpp:400-450
Condition
Friction Multiplier - Source
Dry
1.0
NFGWeatherFrictionComponent.cpp:80
Wet
0.7
NFGWeatherFrictionComponent.cpp:82
Snow
0.35
NFGWeatherFrictionComponent.cpp:84
Ice
0.15
NFGWeatherFrictionComponent.cpp:86
UDS Integration
Ultra Dynamic Sky property control via reflection
NFGWeatherControlComponent.cpp:100-200
13 Weather Presets
ClearSkies, Cloudy, Foggy, Rain, Snow, etc.
NFGWeatherControlComponent.cpp:50-90
24-Hour Forecasting
Predict weather changes with configurable interval
NFGIntegratedWeatherSystem.cpp:200-280
Severe Weather Warnings
Alert when thunderstorms approach
NFGIntegratedWeatherSystem.cpp:320-380
Seasonal Temperature
Spring +0°C, Summer +5°C, Autumn -5°C, Winter -15°C
NFGWeatherManagerActor.cpp:80-120
Structure
Description - Source
FInputWithName
Named input with float value
NFGModelComponent.h:72-92
InputsWithName Array
Thread-safe array of current inputs
NFGModelComponent.h:839
PreviousInputsWithName
Historical inputs for recurrent connections
NFGModelComponent.h:869
InputNameToIndexCache
O(1) lookup map (lowercase name → index)
NFGModelComponent.h:841-843
JSON-Based Mapping
Maps actor properties to network inputs
NFGInputRelayComponent.h:23-38
8 Source Types
LocationX/Y/Z, RotationPitch/Roll/Yaw, TimeSeconds
NFGInputRelayComponent.h:10-20
Pre-Resolved Enum
O(1) source type lookup
NFGInputRelayComponent.cpp:62-74
BeginProjectInputs/AddProjectInput
Dynamic input appending API
NFGModelComponent_Lifecycle.cpp:1862-1916
Range
Purpose - Source
NFGVision
Vision input slots
NFGInputLayout.h:85-90
GazeAbsolute
Attention gaze input
NFGInputLayout.h:92-95
AudioAggregated
Aggregated audio input
NFGInputLayout.h:97-100
MetaRange
Meta-regulator status (10+ inputs)
NFGInputLayout.h:102-110
EvoRange
Evolution feature inputs
NFGInputLayout.h:112-115
FOutputWithName
Named output with float value
OutputsWithName.h:12-45
OutputHistory Ring Buffer
Configurable depth (default 10 frames)
OutputHistoryComponent.h:74-85
Weighted History
Linear decay from 1.0 (newest) to ~0.0 (oldest)
OutputHistoryComponent.cpp:75-85
Reward History
Circular buffer with CurrentRewardIndex
NFGModelComponent_History.cpp:37-60
27 Activation Functions
Full output post-processing
CPUComponent.cpp:4643-4768
ESensorsDirectionMode
FullCircle (360°) or HalfCircle (180°)
SensorsConfig.h:9-13
EGridQueryMode
Circle or Rectangle coverage
SensorsConfig.h:19-24
VectorsNum
Number of ray-cast directions
SensorsConfig.h:48-49
MaxRadius
Detection range in world units
SensorsConfig.h:60-61
bNormalize
Enable [0,1] scaling
SensorsConfig.h:70-71
PrecomputedDirectionVectors
Cached ray directions
SensorsConfig.h:73-74
AddDebugLine
Draw debug lines with thickness and color
DebugManager.cpp:66
AddDebugSphere
Render spheres at world locations
DebugManager.cpp:101
AddDebugPlane
Place planes with normal orientation
DebugManager.cpp:130
HISM Spheres/Planes
Hierarchical instanced mesh for performance
DebugManager.h:20-23
Single-Frame Visualization
Auto-clears every frame
DebugManager.cpp:62-63
BeginKernelExecution
Start timing for named kernel
KernelPerformanceMonitor.cpp:72
EndKernelExecution
Stop timing and record data
KernelPerformanceMonitor.cpp:78
GFLOPS Estimation
Kernel-type-aware compute estimate
KernelPerformanceMonitor.cpp:225
Memory Bandwidth
Rough estimate: 3 ops × 2 bytes per work item
KernelPerformanceMonitor.cpp:230
Performance History
Last 100 snapshots for trend analysis
KernelPerformanceMonitor.h:156
ExportToCSV
Output kernel stats to file
KernelPerformanceMonitor.cpp:162
CheckPerformanceIssues
Detect 20%+ degradation vs baseline
KernelPerformanceMonitor.cpp:262
Mode
Description - Source
State1: ShowOutputOnly
Display only output neurons
VisualizationComponent.h:75
State2: ShowInputAndOutput
Input + output neurons
VisualizationComponent.h:77
State3: ShowAllNeurons
Full network visualization
VisualizationComponent.h:79
State4: + InputValueText
Neurons with input labels
VisualizationComponent.h:81
State5: + InputOutputText
Input and output labels
VisualizationComponent.h:83
State6: + AllText
Complete annotation
VisualizationComponent.h:85
Category
Commands - Source
Logging
EnableFileLogging, DisableFileLogging, FlushLog
NFGConsoleCommands.cpp:52-66
CMA-ES
EnableCMAES, DisableCMAES, CMAESStatus, SetCMAESLearningRate
NFGConsoleCommands.cpp:108-294
Widgets
ToggleDecisionExplainer, ToggleTrainingProgress, ToggleAIMilestones
NFGConsoleCommands.cpp:330-403
Testing
RunAllTests, RunComponentTests, GenerateTestReport
NFGConsoleCommands.cpp:430-457
Weather
SetWeather, SetTimeOfDay, SetRain, SetSnow, SetFog (17+ commands)
NFGConsoleCommands.cpp:495-1049
Category
Purpose - Source
NFGLog
Main general-purpose logging
NFGLogging.h:11
NFGWidget
UI widget system
NFGLogging.h:12
NFGNetwork
Neural network operations
NFGLogging.h:13
NFGGpu
GPU backend and shaders
NFGLogging.h:14
NFGTraining
Evolution and fitness
NFGLogging.h:15
NFGIo
File I/O operations
NFGLogging.h:16
NFGWeather
Environmental system
NFGLogging.h:17
NFGDebug
Debug-only (suppressed)
NFGLogging.h:18
NFGVersion
Version and build info
NFGLogging.h:19
Metric
Description - Source
Generation/Epoch
Evolution progress counters
NFGTrainingTelemetry.h:15-20
ValidModelCount
Models with valid fitness
NFGTrainingTelemetry.h:22
AverageFitness
Mean population fitness
NFGTrainingTelemetry.h:28
FitnessStdDev
Population diversity metric
NFGTrainingTelemetry.h:30
BestFitness/WorstFitness
Champion and weakest
NFGTrainingTelemetry.h:32-34
HallCount/HallAverageFitness
Elite pool statistics
NFGTrainingTelemetry.h:38-44
CPUChildQueue/GPUChildQueue
Pipeline statistics
NFGTrainingTelemetry.h:48-52
Component
Responsibility - Source
NFGEvolutionComponent
Genetic operators, CMA-ES scheduling
NFGEvolutionComponent.cpp
NFGPopulationComponent
Population initialization, flat arrays
NFGPopulationComponent.cpp
NFGTrainingComponent
Inference dispatch to backends
NFGTrainingComponent.cpp
NFGPersistenceComponent
Model saving/loading
NFGPersistenceComponent.cpp
HallOfFittestComponent
Elite ranking and selection
HallOfFittestComponent.cpp
Crossover
Parent selection and child generation
NFGEvolutionComponent.cpp:29-149
CrossoverCompleteHallOfFittest
Batch crossover for all elites
NFGEvolutionComponent.cpp:185-195
TickCMAES
CMA-ES update scheduling with frame counter
NFGEvolutionComponent.cpp:151-183
TryInitializeCMAES
Graceful degradation with fallback sizes
NFGEvolutionComponent.cpp:197-236
GPU-Exclusive Handling
Defers operations if GPU busy
NFGEvolutionComponent.cpp:40
CreateModels
Initial population with unique ModelIndex
NFGPopulationComponent.cpp:19-151
PrepareFlatArrays
Memory layout optimization for GPU/CPU
NFGPopulationComponent.cpp:153-244+
InitializeLSTMWeights
LSTM cell and gate weight setup
NFGPopulationComponent.cpp:505+
InitializeGRUWeights
GRU weight initialization
NFGPopulationComponent.cpp:691+
NFGVision Integration
Reserve input space for vision
NFGPopulationComponent.cpp:45-60
InitList
Initialize elite population with sorting
HallOfFittestComponent.cpp:49-68
AddToHallOfFittest
Fitness threshold and sorted insertion
HallOfFittestComponent.cpp:165-206
Insert
Binary search O(log n) with memory recycling
HallOfFittestComponent.cpp:208-410+
AcquireEntry/RecycleEntry
Memory pool management
HallOfFittestComponent.cpp:70-111
ShrinkList
Probabilistic culling of worst performers
HallOfFittestComponent.cpp:467-491
OnFittestUpdated Delegate
Event notification for UI/monitoring
HallOfFittestComponent.cpp:462-465
DXR Path (Legacy)
Disabled in UE 5.5+ due to API changes
RaycastGPUManager.cpp:30-60
Fallback Compute
Ultra-optimized compute shader active
RaycastGPUManager.cpp:73-87
Render Graph Integration
FRenderGraphBuilder for GPU resource management
RaycastGPUManager.cpp:653-750
Async Triple-Buffered Readback
Non-blocking GPU→CPU transfer
RaycastGPUManager.cpp:500-600
NumRays
4-720 rays (typical: 8-360)
RaycastGPU360Mode.h:15
MaxDistance
Ray range in world units (default 5000)
RaycastGPU360Mode.h:18
NumSectors
Angular sectors for aggregation (default 8)
RaycastGPU360Mode.h:21
Uniform Angular Distribution
AngleStep = 360 / NumRays degrees
RaycastGPU360Mode.cpp:20-40
Height Offset
Multi-level perception (default 100 UU)
RaycastGPU360Mode.h:24
Metric
Formula - Purpose - Source
MinDistance
min(sector rays) - Closest obstacle (safety)
RaycastGPU360Mode.cpp:100
MaxDistance
max(sector rays) - Farthest clear space (navigation)
RaycastGPU360Mode.cpp:102
AvgDistance
mean(sector rays) - Overall sector density
RaycastGPU360Mode.cpp:104
Vehicle Batch Actor
Register/unregister vehicle components
RaycastGPUVehicleBatch.h:30-50
ProcessBatch
Single GPU dispatch for all vehicles
RaycastGPUVehicleBatch.cpp:70-200
Memory Optimization
Pre-allocation with Reserve(), MoveTemp
RaycastGPUVehicleBatch.cpp:85-100
UpdateFrequency
0-120 Hz (0 = every frame)
RaycastGPUVehicleBatch.h:55
SAH Optimization
Surface Area Heuristic cost function
RaycastGPUBVHOptimizer.cpp:50-100
Configurable Bins
32 bins, adaptive leaf sizing
RaycastGPUBVHOptimizer.cpp:25
Branchless AABB
Vectorized min/max intersection
FallbackComputeUltraOptimized.usf:70-85
Shared Memory Stack
2048 entries for BVH traversal
FallbackComputeUltraOptimized.usf:80
Level
Format - Range - Purpose - Source
Raw
FRaycastResult - [0, MaxDist] - Precise distance
RaycastGPUTypes.h:35-45
Normalized
RayDistances[] - [0, 1] - Neural input
RaycastGPU360Mode.cpp:52-70
Sector
SectorData[] - [0, 1] × 3 - Aggregate perception
RaycastGPU360Mode.cpp:100-120
Configuration
Throughput - Latency
32 rays × 100 agents
3,200 rays/frame - 1-2 ms
360 rays × 100 agents
36,000 rays/frame - 5-8 ms
360 rays × 1000 agents
360,000 rays/frame - 20-30 ms
Max (320K rays)
320,000 rays/frame - 15-25 ms
UNFGRaycastIntegration
Direct GPU buffer integration
NFGRaycastIntegration.cpp:1-100
Zero-Copy Transfer
GPU→GPU data flow without CPU roundtrip
NFGRaycastIntegration.cpp:70-80
UpdateRaycastsForModels
Batch raycast update for all models
NFGRaycastIntegration.cpp:85-120
1-3 Frame Latency
From physics update to network input
NFGRaycastIntegration.cpp:30-50
Structure-of-Arrays Layout
GPU-optimized cache-coherent data
TorqueStormVehicleData.h:9-45
1000+ Vehicle Capacity
Scalable to 10,000 vehicles
TorqueStormConfig.h:15-74
O(1) Vehicle Lookup
TMap-based indexing
TorqueStormVehicleManager.h:108-109
Dirty Transform Tracking
Only update changed vehicles
TorqueStormVehicleData.h:40
Ackermann Steering
Realistic steering geometry
TorqueStormPhysicsSystem.cpp:200-209
Slip Angle Tire Model
Dynamic grip based on slip
TorqueStormPhysicsSystem.cpp:244-287
Aerodynamic Drag
Speed² drag formula
TorqueStormPhysicsSystem.cpp:223-232
Dynamic Downforce
Speed-dependent grip boost
TorqueStormPhysicsSystem.cpp:234-239
Multi-Wheel Suspension
Per-wheel spring/damper
TorqueStormPhysicsSystem.cpp:298-438
Wheel Raycast Ground Detection
Physics-accurate ground contact
TorqueStormPhysicsSystem.cpp:441-470
Traction-Limited Forces
Friction-clamped acceleration
TorqueStormPhysicsSystem.cpp:156-177
Rolling Resistance
Realistic energy dissipation
TorqueStormPhysicsSystem.cpp:289-294
Physics Substeps
Configurable 1-4 substeps
TorqueStormPhysicsSystem.cpp:58-72
Preset
Description
4-Wheel Car
Standard car with driven rear wheels
6-Wheel Truck
Enhanced stability configuration
Formula 1
Wide front track, narrow rear
Perlin Noise Layout
Seed-based deterministic generation
ProceduralTrack.cpp:139-203
Spline Optimization
Hill-climbing optimization (50 iterations)
ProceduralTrack.cpp:226-279
Self-Intersection Detection
Prevents overlapping track segments
ProceduralTrack.cpp:281-308
Catmull-Rom Smoothing
Natural spline curves
ProceduralTrack.cpp:310-333
Parallel Wall Splines
Left/right boundary generation
ProceduralTrack.cpp:205-224
Multi-Octave Perlin
6 octaves, 0.35 persistence
TrackProceduralFloorCPU.h:99-220
Domain Warping
Natural terrain features
TrackProceduralFloorCPU.cpp
GPU Compute Shader
RDG-based terrain generation
TerrainCS.cpp
Roadside High Detail
2x density near track
TrackProceduralFloorCPU.h
KD-Tree Spline Cache
O(log n) nearest-point queries
TrackSplineCacheComponent.h:19-68
Ideal Racing Line
Speed-optimized path calculation
TrackIdealLineComponent.h:7-48
Sector Division
Vehicle progress tracking
TrackGenSectorComponent.h:11-66
OnSectorEntered/Exited
Event-driven sector tracking
TrackGenSectorComponent.cpp
Bits
Range - Memory Savings - Source
1-bit
±1 (binary) - 97%
NFGQuantBinaryHelpers.h:6-29
Per-Output Scale
Per-neuron adaptive scaling
NFGQuantizationHelper.cpp:219-238
Per-Tensor Mode
Global layer-wide scale
Hyperparameters.h
Symmetric Quantization
Zero-centered range
NFGQuantizationHelper.cpp:240-255
LSTM Gate Control
Stability-aware gating
NFGQuantizationBackend.cpp:38-44
Method
Use Case - Source
Single Value
Point dequantization
NFGQuantizationHelper.cpp:257-270
Packed Unpacking
Batch extraction from uint32
NFGQuantCodec.h:82-114
Column Decoding
GPU matrix operations
CPUQuantizationHelpers.h:27-66
Input Bitplanes
Multi-channel input encoding
NFGQuantCodec.h:22-41
Binary Search Insertion
O(log N) ranking
HallOfFittestComponent.cpp:208-432
Fitness/Reward Ranking
Dual ranking modes
HallOfFittestComponent.cpp:34-46
Elite Replacement
Lowest-performer eviction
HallOfFittestComponent.cpp:165-206
Entry Recycling
UObject pool management
HallOfFittestComponent.cpp:70-111
Deep Model Copy
50+ fields per model
NFGModelComponent.cpp:1180-1299
MMS State Arrays
Full neuron state preservation
HallOfFittestComponent.cpp:314-413
JSON Serialization
Human-readable format
NFGModelComponent_Serialization.cpp:17-162
Base64 Weight Encoding
Compact binary storage
NFGModelComponent_Serialization.cpp
Guard
Protection - Source
NaN Fitness Detection
Rejects corrupted models
HallOfFittestComponent.cpp:185-190
TS-ReLU Capacity Validation
Array size matching
HallOfFittestComponent.cpp:306-310
MMS Array Validation
Dimensional consistency
HallOfFittestComponent.cpp:315-413
Parameter
Value - Purpose
B_long
10.0 - Longitudinal stiffness
C_long
1.9 - Longitudinal shape factor
B_lat
10.0 - Lateral cornering stiffness
C_lat
1.3 - Lateral shape factor
Fz0
3750N - Reference load
Progressive Spring Rate
Quadratic stiffening
VehiclePhysics.usf
Asymmetric Damping
100% compression, 70% extension
VehiclePhysics.usf
Bump Stop Simulation
95% max compression trigger
VehiclePhysics.usf
Anti-Roll Bar
Front/rear independent ARB
VehiclePhysics.usf
Longitudinal Transfer
Acceleration → rear weight gain
Lateral Transfer
Cornering → outside wheel loading
CG Height Effect
Higher CG = more transfer
Engine Torque Curve
Texture-based lookup
VehiclePhysics.usf
Gear Ratios
Per-gear configuration
VehiclePhysics.usf
Clutch Engagement
Smooth slip simulation
VehiclePhysics.usf
Engine Braking
Throttle-off deceleration
VehiclePhysics.usf
Gate
Activation - Purpose - Source
Input Gate
Sigmoid - Controls input flow
LSTM.usf:335-391
Forget Gate
Sigmoid - Controls memory retention
LSTM.usf:392-441
Cell Gate
Tanh - Candidate cell state
LSTM.usf:443-492
Output Gate
Sigmoid - Controls output
LSTM.usf:494-543
Gate
Activation - Purpose - Source
Update Gate
Sigmoid - New vs old state blend
GRU.usf:283-338
Reset Gate
Sigmoid - Selective memory reset
GRU.usf:340-393
Candidate
Tanh - New hidden state
GRU.usf:412-465
Self-Recurrence Mode
Diagonal weights
FeedForwardBatch2D.usf:113-115
Full Recurrence Mode
Dense weight matrix
FeedForwardBatch2D.usf
Working Memory
Short-term latching
FeedForwardBatch2D.usf:152-154
MMS Integration
Multi-mode neurons
FeedForwardBatch2D.usf:180-192
Parameter
Per Gate - Purpose
Reward Modulation
4 LSTM / 2 GRU - Dopamine-like effect
Event Threshold
4 LSTM / 2 GRU - Salience detection
Surprise Modulation
4 LSTM / 2 GRU - Intrinsic motivation
Gate Momentum
4 LSTM / 2 GRU - Temporal smoothing
Spatial Hashing
Prime-based deterministic hash
BroadphaseCollision.usf
AABB Computation
8-corner transformation
BroadphaseCollision.usf
CCD via Velocity
Continuous collision detection
BroadphaseCollision.usf
Collision Filtering
Group/mask system
BroadphaseCollision.usf
Algorithm
Max Iterations - Purpose - Source
GJK
64 - Collision detection
NarrowphaseCollision.usf
EPA
64 - Penetration depth
NarrowphaseCollision.usf
Support Functions
- - Box/Sphere/Capsule
NarrowphaseCollision.usf
Constraint Type
Description - Source
Contact Constraint
Normal + friction impulses
ConstraintSolver.usf
Verlet Integration
Energy-stable
RigidBodyDynamics.usf
Explicit Euler
Simple, stable
RigidBodyDynamics.usf
Sleep Detection
Performance optimization
RigidBodyDynamics.usf
Quaternion Rotation
Deterministic normalization
DeterministicMath.usf
Population Mean
Per-feature mean calculation
PopulationStats.usf
Population Variance
Numerical stability (ε=1e-6)
PopulationStats.usf
Gaussian Sampling
Box-Muller transform
PopulationStats.usf
Fitness-Weighted Mean
CMA-ES adaptive weighting
PopulationStats.usf
Layer-wise Error
Per-layer absolute error
PredictiveMetricsHistogramCS.usf
Cortical Column Tracking
Up to 16 columns/layer
PredictiveMetricsHistogramCS.usf
Per-Model MAE
Mean absolute error
PredictiveMetricsReduceCS.usf
Per-Model Max Error
Peak error tracking
PredictiveMetricsReduceCS.usf
Bit Width
Range - Source
8-bit
[-128, 127]
PredictiveTopDownTransposeCS.usf
4-bit
[-8, 7]
PredictiveTopDownTransposeCS.usf
2-bit
[-2, 1]
PredictiveTopDownTransposeCS.usf
1-bit
±1
PredictiveTopDownTransposeCS.usf
Layer-Wise Extraction
Dynamic state sampling
EvoFeaturesCS.usf
EMA Filtering
Multi-timescale retention
EvoFeaturesCS.usf
Reward Injection
Current reward as input
EvoFeaturesCS.usf
Reward Delta
First-order change tracking
EvoFeaturesCS.usf
FloatData
Primary neural type with genetic crossover
FloatData.cpp
IntData
Discrete output type (steering/throttle)
IntData.cpp
FVectorData
3D vector with component-wise crossover
FVectorData.cpp
FLinearColorData
RGBA color with alpha crossover
FLinearColorData.cpp
StringData
Text output with character-level crossover
StringData.cpp
TimespanData
Temporal data with magnitude crossover
TimespanData.cpp
BaseData
Abstract base with virtual operations
BaseData.cpp
AgentData
Container with ordered insert
AgentData.cpp
Virtual Crossover
Type-specific blend operations
BaseData::Crossover()
Dynamic Cast Safety
Runtime type checking
FloatData::Crossover():44
Alpha-Weighted Blend
Configurable parent weighting - All data types
Character Splicing
String-level genetic recombination
StringData::Crossover()
Component Independence
XYZ crossover for vectors
FVectorData::Crossover()
Dual Serialization
Both Save/Load paths
FloatData::Serialize()
Binary Archive
Compact network format - All data types
Type Preservation
Maintains class hierarchy
BaseData.cpp
Ordered Container
Index-based retrieval
AgentData::AddByName()
6-DOF Movement
Full spatial navigation
NFGFreeCameraComponent.cpp:78-135
Acceleration Model
Smooth input response
NFGFreeCameraComponent.cpp:110
Deceleration Braking
Friction-based stopping
NFGFreeCameraComponent.cpp:118
Max Speed Limit
Configurable velocity cap
NFGFreeCameraComponent.cpp:95
Roll/Pitch/Yaw
Independent rotation axes
NFGFreeCameraComponent.cpp:130-133
Look Sensitivity
Adjustable turn rate
NFGFreeCameraComponent.cpp:100
Enhanced Input System
UE5 Input Actions
NFGFreeCameraInputConfig.cpp
Action Binding
Forward/Back/Left/Right/Up/Down
NFGFreeCameraInputConfig.cpp:25-48
Look Action
Mouse/gamepad camera
NFGFreeCameraInputConfig.cpp:50
Dynamic Context
Runtime rebinding
NFGFreeCameraInputConfig.cpp:18
Scene Depth Capture
GPU depth buffer sampling
NFGSceneNFGVisionComponent.cpp:45-120
Resolution Config
Adjustable capture size
NFGSceneNFGVisionComponent.h:35
Gaze Direction
AI-controlled look vector
NFGSceneNFGVisionComponent.cpp:78
FOV Control
Adjustable field of view
NFGSceneNFGVisionComponent.h:38
Async Readback
Non-blocking GPU transfer
NFGSceneNFGVisionComponent.cpp:95
Depth Normalization
Range mapping to [0,1]
NFGSceneNFGVisionComponent.cpp:110
Render Target Pool
Reusable GPU resources
NFGSceneNFGVisionComponent.cpp:50
Scene Capture 2D
UE5 capture component
NFGSceneNFGVisionComponent.cpp:55
Material Instance
Custom depth visualization
NFGSceneNFGVisionComponent.cpp:65
Debug Visualization
Optional depth preview
NFGSceneNFGVisionComponent.cpp:125
Operator
Description - Source
Adaptive Gaussian
σ scales with fitness rank
MutationComponent.cpp:85
Elite Thawing
Frozen → unfrozen transitions
MutationComponent.cpp:142
Mirrored Sampling
Antithetic pairs for variance reduction
MutationComponent.cpp:168
Orthogonal Mutation
Gram-Schmidt decorrelation
MutationComponent.cpp:195
Strategy
Description - Source
Constant Rate
Fixed probability
MutationComponent.cpp:45
Linear Decay
Rate decreases with generation
MutationComponent.cpp:52
Cosine Annealing
Cyclical warm restarts
MutationComponent.cpp:60
Adaptive (1/5 Rule)
Rechenberg's rule
MutationComponent.cpp:68
Layer-Specific
Different rates per layer
MutationComponent.cpp:78
Self-Adaptive
Evolved strategy parameters
MutationComponent.cpp:92
Input Sensitivity
Reduced mutation near inputs
MutationComponent.cpp:210
Output Protection
Conservative output mutations
MutationComponent.cpp:218
Hidden Plasticity
Higher rates for hidden layers
MutationComponent.cpp:225
Depth Scaling
Rate scales with layer depth
MutationComponent.cpp:232
Weight Bounds
Prevents explosion
MutationComponent.cpp:245
Bias Protection
Separate bias mutation
MutationComponent.cpp:252
Structural Freeze
Topology preservation
MutationComponent.cpp:260
Gradient Estimation
Finite difference approximation
MutationComponent.cpp:268
State
Description - Source
Layer Spacing
Configurable Z-distance
VisualizationComponent_Layout.cpp:45
Neuron Grid
2D arrangement per layer
VisualizationComponent_Layout.cpp:68
Connection Bezier
Curved weight lines
VisualizationComponent_Layout.cpp:95
Auto-Fit
Scale to viewport
VisualizationComponent_Layout.cpp:125
Activation Streaming
Per-frame neuron updates
VisualizationComponent_Process.cpp:35
Color Gradient
Activity → color mapping
VisualizationComponent_Process.cpp:60
Weight Animation
Smooth transition effects
VisualizationComponent_Process.cpp:85
Async GPU Readback
Non-blocking data fetch
VisualizationComponent_Process.cpp:110
Backend Factory
CPU/GPU backend selection
NFGManager_Backend.cpp:45-85
Provider Registration
Dynamic component binding
NFGManager_Backend.cpp:90-130
Generation Management
Epoch lifecycle
NFGManager_Evolution.cpp:45-95
Fitness Aggregation
Population ranking
NFGManager_Evolution.cpp:100-145
Batch Processing
Population-wide inference
NFGManager_FeedForward.cpp:45-100
Timing Control
Fixed timestep management
NFGManager_FeedForward.cpp:105-145
Input Injection
Sensor → network mapping
NFGManager_FeedForward.cpp:150-195
Output Extraction
Network → actuator mapping
NFGManager_FeedForward.cpp:200-245
Config Loading
JSON hyperparameter parse
NFGManager_Init.cpp:45-100
Component Spawn
Dynamic actor creation
NFGManager_Init.cpp:105-160
Provider Binding
Interface wire-up
NFGManager_Init.cpp:165-220
Validation
Architecture consistency
NFGManager_Init.cpp:225-270
BeginPlay Hook
Initialization sequence
NFGManager_Lifecycle.cpp:45-85
Tick Management
Update orchestration
NFGManager_Lifecycle.cpp:90-140
Architecture Builder
Network topology creation
NFGManager_Model.cpp:45-110
Weight Initialization
Xavier/He/Orthogonal
NFGManager_Model.cpp:115-175
Clone Operations
Model duplication
NFGManager_Model.cpp:180-230
Comparison
Architecture diff tools
NFGManager_Model.cpp:235-280
Spawn Management
Agent creation/destruction
NFGManager_Population.cpp:45-105
Reset Coordination
Episode boundary handling
NFGManager_Population.cpp:110-165
Statistics Tracking
Population metrics
NFGManager_Population.cpp:170-225
Diversity Monitoring
Genotype variance
NFGManager_Population.cpp:230-280
Debug Drawing
Real-time visualization
NFGManager_Render.cpp:45-100
Metric Collection
Performance counters
NFGManager_Telemetry.cpp:45-100
Event Logging
Timestamped events
NFGManager_Telemetry.cpp:105-155
Export Formats
CSV/JSON/Binary
NFGManager_Telemetry.cpp:160-210
Real-Time Streaming
External tool support
NFGManager_Telemetry.cpp:215-260
Slate Integration
UE5 UI framework
NFGManager_Widgets.cpp:45-95
Interface
Purpose - Source
INFGBackendProvider
CPU/GPU backend abstraction
NFGBackendProvider.h
INFGFitnessProvider
Fitness computation
INFGFitnessProvider.h
INFGRewardProvider
Reward signal generation
INFGRewardProvider.h
INFGMTDPProvider
Multi-timescale delay
INFGMTDPProvider.h
Interface
Purpose - Source
INFGModulatorGainsProvider
RMGA neuromodulation
INFGModulatorGainsProvider.h
INFGMetaRegulatorProvider
UCB meta-learning
INFGMetaRegulatorProvider.h
INFGMetaProgressProvider
Learning progress tracking
INFGMetaProgressProvider.h
INFGWhatIfStateProvider
Counterfactual rollouts
INFGWhatIfStateProvider.h
Interface
Purpose - Source
NFGChildQueueTelemetryProvider
Offspring queue monitoring
NFGChildQueueTelemetryProvider.h
INFGTelemetryProvider
General metrics export
INFGTelemetryProvider.h
Runtime Selection
CPU/GPU based on hardware
NFGBackendFactory.cpp:45-85
Capability Detection
Feature availability
NFGBackendFactory.cpp:90-130
Fallback Chain
Graceful degradation
NFGBackendFactory.cpp:135-170
Live Config Reload
Change parameters without restart
NFGProfile.cpp:45-95
Partial Updates
Selective parameter modification
NFGProfile.cpp:100-145
Rollback Support
Undo configuration changes
NFGProfile.cpp:150-195
Validation Pipeline
Pre-apply consistency checks
NFGProfile.cpp:200-245
11-File Config System
Distributed hyperparameters
NFGProfile.cpp:250-310
Override Priority
User > Project > Default
NFGProfile.cpp:315-360
Type Coercion
Safe JSON type conversion
NFGProfile.cpp:365-405
Missing Key Handling
Default value injection
NFGProfile.cpp:410-450
Config File
Purpose - Source
ArchitectureConfig.json
Network topology
Config/ArchitectureConfig.json
EvolutionConfig.json
CMA-ES parameters
Config/EvolutionConfig.json
FitnessConfig.json
Reward weights
Config/FitnessConfig.json
AttentionConfig.json
Attention system
Config/AttentionConfig.json
RMGAConfig.json
Neuromodulation
Config/RMGAConfig.json
WorldPredictorConfig.json
Prediction system
Config/WorldPredictorConfig.json
MTDPConfig.json
Multi-timescale delay
Config/MTDPConfig.json
NeuroDynamicsConfig.json
STDP parameters
Config/NeuroDynamicsConfig.json
BackendConfig.json
CPU/GPU selection
Config/BackendConfig.json
SensorsConfig.json
Input configuration
Config/SensorsConfig.json
GameConfig.json
Runtime settings
Config/GameConfig.json
bEnabled
true - Master toggle
Hyperparameters.h:3485
ExperienceBufferSize
256 - Max experiences retained
Hyperparameters.h:3488
SampleRate
1 - Recording frequency
Hyperparameters.h:3491
SleepIntervalFrames
256 - Replay trigger threshold
Hyperparameters.h:3494
ReplayBatchSize
32 - Samples per replay batch
Hyperparameters.h:3497
bPrioritizeHighReward
true - High-reward sampling
Hyperparameters.h:3503
bProcessAsync
false - Async replay mode
Hyperparameters.h:3506
AsyncSamplesPerTick
8 - Max async samples/tick
Hyperparameters.h:3509
Structure
Description - Source
FNFGSleepReplayFrame
Activation snapshot + reward
NFGNeuroDynamicsProvider.h:42
FNFGSleepReplayBuffer
Circular experience buffer
NFGNeuroDynamicsProvider.h:50
FNFGNeuroDynamicsModelState
Per-model replay state
NFGNeuroDynamicsProvider.h:62
Experience Recording
Per-frame activation capture
NFGNeuroDynamicsProvider.cpp:1167
Priority Sampling
High-reward experience selection
NFGNeuroDynamicsProvider.cpp:1209
Synchronous Replay
Immediate batch processing
NFGNeuroDynamicsProvider.cpp:1246
Asynchronous Replay
Distributed across frames
NFGNeuroDynamicsProvider.cpp:1283
Global Replay Flag
Cross-provider coordination
NFGNeuroDynamicsProvider.cpp:121
EWMA Gain Tracking
Smooth weight change metrics
NFGNeuroDynamicsProvider.cpp:1493
Command
Description - Source
nfg.DumpSleepReplayStats
Show replay statistics
NFGNeuroDynamicsProvider.cpp:2223
nfg.DumpSleepReplayEntry
Inspect single experience
NFGNeuroDynamicsProvider.cpp:2244
nfg.DumpStdpProfile
STDP timing statistics
NFGNeuroDynamicsProvider.cpp:2272
nfg.ResetStdpProfile
Clear profiling data
NFGNeuroDynamicsProvider.cpp:2317
Kernel
Description - Source
cmaes_init
State initialization
CMAESComponent.cpp:25
sample_multivariate_normal
Box-Muller Gaussian
CMAESComponent.cpp:108
cmaes_update
Main CMA-ES update
CMAESComponent.cpp:183
cmaes_rank_mu_update
Covariance rank-mu
CMAESComponent.cpp:291
cmaes_eigen_decomposition
Power iteration eigendecomp
CMAESComponent.cpp:349
cmaes_generate_samples
Population sampling
CMAESComponent.cpp:498
cmaes_compute_invsqrtc
Inverse sqrt covariance
CMAESComponent.cpp:604
Component
Methods - Source
CrossoverElmanComponent
6 crossover methods + 4 mutation modes
CrossoverElmanComponent.cpp
CrossoverLSTMComponent
LSTM gate-specific crossover
CrossoverLSTMComponent.cpp
CrossoverBatchNormComponent
γ/β parameter crossover
CrossoverBatchNormalizationComponent.cpp
CrossoverMinMaxComponent
Weight bounds computation
CrossoverMinMaxComponent.cpp
CrossoverRLComponent
Reward-gated crossover
CrossoverReinforcementLearningComponent.cpp
Function
Formula - Source
BatchNormalization
Calculate + apply BN
CalculateBatchStatistics.h
Dropout
LCG-based regularization
DropOut.h
Clamp
Value clamping utility
Clamp.h
Randomizer
LCG random generation
Randomizer.h
Multi-Scale Tracking
Minute/Hour/Day counters
DeathStatisticsComponent.h:24-51
Death Rate Calculation
Normalized by time unit
DeathStatisticsComponent.cpp:41
Timer-Based Updates
60s/3600s/86400s intervals
DeathStatisticsComponent.cpp:17
Ring Buffer History
1440/24/30 entry capacities
DeathStatisticsComponent.h:154-170
Real-Time FPS
1/DeltaTime calculation
FPSComponent.cpp:70
Tick Profiling
Conditional timing macro
FPSComponent.cpp:9
Ring Buffer Architecture
Circular output history
OutputHistoryComponent.h:74
Scratch Buffer Optimization
Zero-allocation updates
OutputHistoryComponent.h:81
Flattened Cache
Lazy evaluation pattern
OutputHistoryComponent.h:84
Configurable History
Steering/Throttle/Brake flags
OutputHistoryComponent.h:99-107
Weighted History
Linear decay weighting
OutputHistoryComponent.cpp:75
Kernel Timing
BeginKernelExecution/End
KernelPerformanceMonitor.cpp:72
GFLOPS Estimation
Operations/second metrics
KernelPerformanceMonitor.h:36
Memory Bandwidth
GB/s estimation
KernelPerformanceMonitor.h:39
Performance Snapshots
Timestamped state capture
KernelPerformanceMonitor.cpp:117
CSV Export
Performance data export
KernelPerformanceMonitor.cpp:162
Issue Detection
20% degradation threshold
KernelPerformanceMonitor.cpp:262
Oscillating Parameters
Sine wave for mutation rates
SinusCalculator.cpp:12
Configurable Wave
Frequency/Min/Max/Offset
SinusCalculator.h:18-31
Weather-Based Friction
Dry/Wet/Snow/Ice coefficients
NFGWeatherFrictionComponent.h:14-45
Vehicle Registration
Per-vehicle friction updates
NFGWeatherFrictionComponent.h:78
Smooth Transitions
Interpolated friction changes
NFGWeatherFrictionComponent.h:123
Detailed Front Physics
Atmospheric layers + air masses
NFGWeatherFrontManager.h:14-75
Front Types
Cold/Warm/Occluded/Stationary
NFGWeatherFrontManager.h:96-105
Geostrophic Wind
Pressure gradient calculation
NFGWeatherFrontManager.h:211
Thermal Wind
Temperature-driven vectors
NFGWeatherFrontManager.h:212
Convergence/Divergence
Air mass dynamics
NFGWeatherFrontManager.h:213-214
State
Description - Source
Clear
No precipitation
NFGWeatherStateMachine.h:16
Cloudy
Cloud coverage
NFGWeatherStateMachine.h:17
Overcast
Full cloud cover
NFGWeatherStateMachine.h:18
LightRain
Light precipitation
NFGWeatherStateMachine.h:19
HeavyRain
Heavy precipitation
NFGWeatherStateMachine.h:20
Thunderstorm
Lightning + rain
NFGWeatherStateMachine.h:21
Snow
Snow precipitation
NFGWeatherStateMachine.h:22
Fog
Reduced visibility
NFGWeatherStateMachine.h:23
Day/Night Cycle
24-hour simulation
NFGWeatherSimulationComponent.h:63
Temperature Field
Altitude + time based
NFGWeatherSimulationComponent.h:73-79
Pressure System
Sea-level + cells
NFGWeatherSimulationComponent.h:86
Humidity Field
Base + variation
NFGWeatherSimulationComponent.h:93-96
Wind System
Base + turbulence + gusts
NFGWeatherSimulationComponent.h:100-106
Atmospheric Grid
100x100 cells, 1km size
NFGWeatherSimulationComponent.h:110-116
Deterministic Mode
Seeded weather
NFGWeatherSimulationComponent.h:155
Weather Forecasting
N-hour predictions
NFGIntegratedWeatherSystem.h:128
Severe Weather Alerts
Thunderstorm warnings
NFGIntegratedWeatherSystem.h:174
Weather Cycling
Automated state progression
NFGIntegratedWeatherSystem.h:111
Action History Injection
Previous actions as input
WorldPredictorActionContext.usf
Ring Buffer Shifting
Multi-frame history (1-4)
WorldPredictorActionContext.usf
Warmup Handling
Zero output for frame 0
WorldPredictorActionContext.usf
Multi-Step Rollout
Hidden state prediction
WorldPredictorWhatIf.usf
Confidence Scoring
RMSE-based stability
WorldPredictorWhatIf.usf
Danger Scoring
Safety neuron monitoring
WorldPredictorWhatIf.usf
Ping-Pong Buffers
Efficient multi-step
WorldPredictorWhatIf.usf
Max-Score Softmax
Query weighting
WorldPredictorActionCorrection.usf
Learned Confidence
Network-predicted certainty
WorldPredictorActionCorrection.usf
Counterfactual Feedback
Per-query error deltas
WorldPredictorActionCorrection.usf
3/5 Variant Modes
±small, ±large perturbations
WorldPredictorActionVariants.usf
Adaptive Horizon
Learned planning depth
WorldPredictorActionVariants.usf
MSE/Huber Loss
Prediction error
WorldPredictorMSE.usf
Token Cross-Entropy
Discrete prediction
WorldPredictorTokenCE.usf
Multi-Timescale Error
Multiple horizon scales
WorldPredictorMultiTimescale.usf
Consistency Error
Cross-horizon validation
WorldPredictorConsistency.usf
Per-Neuron Error
EWMA smoothed feedback
WorldPredictorPerNeuronError.usf
Strategy
Description - Source
RandomUniform
Uniform [-range, range]
NFGModelComponent_Weights.cpp:55
RandomNormal
Gaussian distribution
NFGModelComponent_Weights.cpp:60
UniformXavier
sqrt(6/(in+out))
NFGModelComponent_Weights.cpp:65
NormalXavier
sqrt(2/(in+out))
NFGModelComponent_Weights.cpp:70
UniformHE
sqrt(6/in)
NFGModelComponent_Weights.cpp:75
NormalHE
sqrt(2/in)
NFGModelComponent_Weights.cpp:80
Orthogonal
QR decomposition
NFGModelComponent_Helpers.cpp:27
Sparse
Reservoir sampling
NFGModelComponent_Helpers.cpp:120
LSUV
Layer-Sequential Unit-Variance
NFGModelComponent_Helpers.cpp:225
Identity
Diagonal + noise
NFGModelComponent_Helpers.cpp:258
DeltaOrthogonal
Orthogonal + scaled identity
NFGModelComponent_Helpers.cpp:287
Fixup
Depth-scaled residual
NFGModelComponent_Helpers.cpp:313
Adaptive
Auto-selection by context
NFGModelComponent_Helpers.cpp:344
Binary Serialization
FArchive-based
NFGModelComponent_Binary.cpp:10
JSON Serialization
Human-readable
NFGModelComponent_Serialization.cpp:17
Quantization Payload
Compressed weights
NFGModelComponent_Serialization.cpp:36
Working Memory Snapshot
State preservation
NFGModelComponent_Serialization.cpp:272
Output History
Circular buffer
NFGModelComponent_History.cpp:6
Reward History
Modulo-indexed
NFGModelComponent_History.cpp:37
Ordered Retrieval
Chronological access
NFGModelComponent_History.cpp:62
Auto-Registration
Manager binding
NFGModelComponent_Lifecycle.cpp:79
Retry Logic
0.5s timer fallback
NFGModelComponent_Lifecycle.cpp:93
TS-ReLU Init
Per-neuron parameters
NFGModelComponent_Lifecycle.cpp:336
Source Type Enum
Pre-resolved 8 types
NFGInputRelayComponent.h:10
JSON Mapping
Config/InputMapping.json
NFGInputRelayComponent.cpp:76
O(1) Resolution
Switch instead of strings
NFGInputRelayComponent.cpp:135
Model Creation
UNFGModelComponent spawn
NFGPopulationComponent.cpp:19
NFGVision Auto-Reserve
Input space allocation
NFGPopulationComponent.cpp:31
Flat Array Preparation
Unified GPU buffers
NFGPopulationComponent.cpp:153
LSTM/GRU Detection
Automatic RNN setup
NFGPopulationComponent.cpp:225-243
TS-ReLU Arrays
8 per-neuron parameter arrays
NFGPopulationComponent.cpp:370
Model Crossover
Hall of Fittest parents
NFGEvolutionComponent.cpp:29
GPU Exclusive Check
CMA-ES contention avoidance
NFGEvolutionComponent.cpp:40
AgentData Crossover
Element-wise additional data
NFGEvolutionComponent.cpp:96
CMA-ES Tick
Frame-based update trigger
NFGEvolutionComponent.cpp:151
Progressive Init
6 feature size fallbacks
NFGEvolutionComponent.cpp:197
Sync FeedForward
Immediate batch dispatch
NFGTrainingComponent.cpp:11
Backend Selection
GPU or CPU dispatch
NFGTrainingComponent.cpp:18
Agent Save
Manager delegation
NFGPersistenceComponent.cpp:10
Agent Load
Manager delegation
NFGPersistenceComponent.cpp:17
AddDebugLine
Scaled plane rendering
DebugManager.cpp:66
AddDebugSphere
HISM sphere instances
DebugManager.cpp:101
AddDebugPlane
Oriented plane rendering
DebugManager.cpp:130
Per-Frame Clear
Instance reset each tick
DebugManager.cpp:59
GetViewMatrix
4x4 view transform
ActorViewData.cpp:6
GetProjectionMatrix
Reversed-Z perspective
ActorViewData.cpp:23
GetViewProjectionMatrix
Combined VP matrix
ActorViewData.cpp:40
Wheel Physics
18 parameters per wheel
NFGGPUVehicleComponent.h:12-100
Engine Simulation
RPM, torque, 8-speed transmission
NFGGPUVehicleComponent.h:105-177
Aerodynamics
Drag + downforce
NFGGPUVehicleComponent.h:182-210
Suspension Model
Spring-damper physics
NFGGPUVehicleComponent.cpp:561
Tire Forces
Slip ratio/angle calculation
NFGGPUVehicleComponent.cpp:640
Fixed Timestep
60Hz (16.67ms)
NFGGPUVehicleComponent.h:508
GPU Buffer Management
34 Float4s per vehicle
VehiclePhysicsComputeComponent.h:220
Async Readback
Double-buffered results
VehiclePhysicsComputeComponent.h:260
SoA Optimization
Structure-of-Arrays layout
VehiclePhysicsComputeComponent.h:280
Telemetry Readback
Speed, G-forces, yaw rate
VehiclePhysicsComputeComponent.h:50
12-State Animation
Neural network visualization
Tutorial1Component.h:21-37
HISM Neurons
Instanced sphere rendering
Tutorial1Component.h:54
Spline Connections
Weight visualization
Tutorial1Component.cpp:400
Interactive Controls
Next/Previous/Stop
Tutorial1Component.h:120-137
AttentionFusedCS
Fused Q·K/√d attention with wave-level reductions
AttentionFusedCS.usf
Half-Precision Packing
4× bandwidth reduction via packed half Q/K/V
AttentionFusedCS.usf:55-60
Per-Model Skip Masking
Selective attention during evolution
AttentionFusedCS.usf:114
Additive vs Multiplicative
Residual connection option
AttentionFusedCS.usf:328-341
Adaptive Softmax
Log-sum-exp numerical stability
AttentionFusedCS.usf:256-268
Fast Exp Option
exp2-based approximation
AttentionFusedCS.usf:68-72
Wave-Level Reduction
WaveActiveSum() intra-warp sum
AttentionFusedCS.usf:223-225
Per-Head LUT
Optional per-head weight lookup
AttentionFusedCS.usf:181-185
Inline Mean Accumulation
SM 6.6+ atomic float
AttentionFusedCS.usf:347
8-Cascade EMA
Timescales from 16ms to 3 minutes
TemporalMemoryCS.usf:44-53
64-Float State Buffer
Per-model retention state
TemporalMemoryCS.usf:55-73
12 Composite Neurons
Blended memory features
TemporalMemoryCS.usf:174-247
Per-Neuron Sparsity
Active neuron tracking
TemporalMemoryCS.usf:116-133
Reward Cascade
Multi-timescale reward tracking
TemporalMemoryCS.usf:40-47
Prediction Error Cascade
WorldPredictor integration
TemporalMemoryCS.usf:48-55
Crisis Signal Detection
Rapid deterioration detection
TemporalMemoryCS.usf
What-If Rollouts
Multi-step imagination
WorldPredictorWhatIf.usf
Ping-Pong Buffers
Write hazard avoidance
WorldPredictorWhatIf.usf:120-182
Action Conditioning
H' = tanh(W_hh·H + W_ha·A + b)
WorldPredictorWhatIf.usf:125-160
Confidence Scoring
RMSE-based confidence
WorldPredictorWhatIf.usf:244-247
Danger Scoring
Multi-step decay weighting
WorldPredictorWhatIf.usf:188-241
Action Context History
DreamerV3-style action memory
WorldPredictorActionContext.usf:56-80
In-Place History Shift
Low-to-high copy pattern
WorldPredictorActionContext.usf:86-97
Softmax Query Weighting
Temperature-scaled action selection
WorldPredictorActionCorrection.usf:76-94
Learned Confidence Output
Network confidence head
WorldPredictorActionCorrection.usf:100-132
Counterfactual Feedback
Regret signal computation
WorldPredictorActionCorrection.usf:170-190
Bitplane Token Encoding
Discrete token reconstruction
WorldPredictorTokenCE.usf:25-46
Horizon-Weighted CE
Exponential decay for multi-step
WorldPredictorTokenCE.usf:70-112
Attention De-Gating
Recover pre-attention activation
STDP.usf:124-149
Prediction-Based Learning
Error-driven weight updates
STDP.usf:151-189
Dopamine Computation
Reward - RewardEWMA
RMGAModulators.usf:220-222
Noradrenaline
max(RewardSurprise, HiddenSurprise)
RMGAModulators.usf:225-236
Acetylcholine
Dual EMA context shift detection
RMGAModulators.usf:238-261
Serotonin
Volatility + NegativeRatio + Drawdown
RMGAModulators.usf:263-284
Welford's Algorithm
Online z-score normalization
RMGAModulators.usf:286-289
Serotonin De-Correlation
Remove DA component from 5-HT
RMGAModulators.usf:291-292
Hybrid Spiking
Burst when threshold crossed
RMGAModulators.usf:294-297
Gate Gain Hysteresis
Prevent oscillation
RMGAModulators.usf:304-306
Quantized Weight Decode
8/4/2/1-bit unpacking
LSTM.usf:14-58
Per-Gate RMGA
4 sets per LSTM
LSTM.usf:101-123
Hybrid Spiking State
LSTMSpikePotentialBuffer
LSTM.usf:130-131
GRU 2-Gate
30% faster than LSTM
GRU.usf
Gate Equations
Update/Reset/Candidate/Final
GRU.usf
Identity Covariance Init
MeanVector from weights
CMAES.usf:40-88
NaN/Inf Guard
Zero-out invalid values
CMAES.usf:62-65
Box-Muller Sampling
Gaussian from uniform - CMAESSampleGeneration
Metric
Value
Test Cases
350+
Lines of Test Code
~8,000+
Helper/Fixture Files
12+
Plugin
Test Files - Key Coverage
NFGTemporalRetention
2 - Buffer guards, auto-attach
NFGNeuroDynamics
1 - Sleep buffer, plasticity defaults
NFGMetaRegulator
3 - UCB exploration, progress guards
NFGMultiModulatorRMGA
2 - Crossover coherence, reward normalization
Pattern
Examples
Mock Backends
FMockNFGLMBackend, FTestNeuroProvider
Fixture Reuse
CreateTestModel(), MakeAttentionManager()
GPU Resource Tests
Buffer creation, UAV/SRV lifecycle
Roundtrip Tests
Encode→Decode, Serialize→Deserialize
Guard Tests
Error path validation with AddExpectedError()
Determinism Tests
Same input → same output validation
System
Edge Cases
Quantization
Boundary values, 1-8 bit variation, packing alignment
NFGLM
UTF-8 multi-byte, END token mid-stream, vocab coverage
CMA-ES
NaN injection, bounds clamping, covariance symmetry
GPU→CPU
Bias layout mismatch, buffer invalidity, RDG fallback
Serialization
Missing arrays, malformed JSON, MMS state consistency
File
Parameters - Purpose
ArchitectureConfig.json
108 - Network structure, MMS, activations, weight init
AttentionConfig.json
32 - Attention modes, heads, temporal window
BackendConfig.json
27
GPU/CPU backend, precision, quantization
EvolutionConfig.json
87 - Mutation, crossover, parent selection
FitnessConfig.json
98 - Fitness selection, RL, BIOS rewards, MetaRegulator
GameConfig.json
~180+ - Game rules, sensors, physics, terrain
MTDPConfig.json
6 - Multi-timescale decision projections
NFGFitnessMetaConfig.json
28 - Internal meta fitness from telemetry
NeuroDynamicsConfig.json
72 - STDP, predictive coding, sleep, working memory
OutputManagerConfig.json
11 - Output post-processing, smoothing
RMGAConfig.json
98 - 4 neurotransmitters, spiking, neuromodulation
RNNConfig.json
68 - LSTM, GRU, Elman, recurrent memory
SensorsConfig.json
96 - Distance sensors, NFG Vision, audio comm
Surroundings.json
32 - Procedural grass, terrain, water
WorldPredictorConfig.json
109 - World model, DreamerV3 what-if rollouts
Config
Notable Parameters
MMS
8 modes, 8 state vars, 64 transition probs per neuron
Attention
4 modes (Disabled/Layer/Temporal/TemporalAdditive)
Temporal Retention
8 EMA timescales (16ms - 3min)
RMGA
4 neurotransmitters with separate Tau/Blend/GateCoeff
WorldPredictor
What-If rollouts, danger scoring, learned confidence
Interface
Methods - Purpose
INFGFitnessProvider
10 - Fitness calculation
INFGRewardProvider
12 - Reinforcement learning reward
INFGMTDPProvider
10 - Multi-target dimensionality projection
INFGAttentionEngineProvider
25+ - GPU attention dispatch
INFGTemporalRetentionProvider
20+ - Multi-timescale memory
INFGWorldPredictorProvider
30+ - World model, What-If rollouts
INFGMetaProgressProvider
1 - Meta-learning progress
INFGMetaRegulatorProvider
3 - UCB output selection
INFGModulatorGainsProvider
1 - RMGA gain readback
INFGWhatIfStateProvider
2 - GPU hidden state snapshots
NFGChildQueueTelemetryProvider
1 - Child pool telemetry
INFGProviderStatus
3 - Provider dashboard telemetry
Mechanism
Use Case
ScriptInterface
TScriptInterface<IInterface> for Blueprint
ModularFeatures
IModularFeatures for plugin backends
Singleton Registry
FNFGNeuroDynamicsRegistry for global providers
Properties (UPROPERTY)
1,372
Functions (UFUNCTION)
541
BlueprintCallable Functions
465
BlueprintPure Functions
95
BlueprintImplementable Events
15
Blueprint Delegates
10
Blueprint Enums
41
Blueprint Structs
104
BlueprintSpawnable Components
21
Blueprintable Classes
13
Enum
Values - Purpose
EOperationMode
Training, Inference - Operation mode
ERNNMethod
None, AverageRNN, LSTM, ElmanRNN - Recurrent type
ECrossoverMethod
9 methods - Genetic crossover
EMutationPowerSystem
4 systems - Mutation magnitude
EWorldPredictorTarget
HiddenLayer, RawInputs, DiscreteTokens - Prediction target
CPU Backend
7 - nfg.cpu.optimize_dense
Attention Engine
12 - nfg.attention.enable, nfg.attention.mode
CMA-ES
20+ - nfg.cmaes.queue_slots_per_tick
Quantization
6 - nfg.q.debug, nfg.q.force_scale
NFGVision
7 - nfg.eye.max_cm, nfg.eye.gamma
Neuro Dynamics
15+ - nfg.neuro.stdp.trace
MetaRegulator
6 - nfg.meta.enabled, nfg.meta.ucb_override
RaycastGPU
4 - raycast.gpu.spline.BezierSubdivisions
Command
Purpose
NFG.EnableFileLogging
Activate file log output
NFG.FlushLog
Flush buffered logs
NFG.ToggleFreeCamera
Toggle free-flight camera
NFG.SetWeather
Change weather preset (0-5)
NFG.SetTimeOfDay
Adjust simulation time
NFG.EnableCMAES / DisableCMAES
Toggle CMA-ES
NFG.CMAESStatus
Show CMA-ES status
NFG.RunAllTests
Execute unit tests
NFG.BlockCrossoverStats
Log crossover statistics
NFG.ToggleDecisionExplainer
Toggle AI explanation widget
Category
Plugin - Purpose
NFGLog
Core - General-purpose logging
NFGWidget
Core
UI/Widget debugging
NFGNetwork
Core - Neural network topology
NFGGpu
Core - GPU operations
NFGTraining
Core - Training progress
NFGIo
Core
File I/O
NFGWeather
Core - Environmental systems
NFGCSGpu
ComputeShaders - Compute shader dispatch
LogNFGAttentionEngine
AttentionEngine - Attention mechanisms
LogNFGWorldPredictor
WorldPredictor - Future state prediction
LogNFGTemporalRetention
TemporalRetention - Multi-timescale memory
LogNFGNeuroDynamics
NeuroDynamics - STDP, sleep replay
LogNFGModulator
RMGA - Neuromodulation
LogNFGMetaRegulator
MetaRegulator - Meta-learning
LogNFGLM
NFGLM - Language model
LogNFGVision
NFGVision - Visual perception (Retina)
LogRaycastGPU
RaycastGPU - Ray casting
Structure
Fields - Purpose
FNFGTrainingTelemetry
Generation, epoch, fitness stats, hall metrics - Training snapshot
FNFGChildQueueTelemetry
Capacity, occupancy, ready/pending counts - Child pool monitoring
FKernelExecutionStats
Time (avg/min/max), execution count, GFlops - Kernel profiling
FPerformanceSnapshot
Frame time, GPU utilization, throughput - Performance snapshot
Half-Precision Storage
Weights as FFloat16, convert on serialize
NFGModelComponent_Binary.cpp:26-27
Conditional Features
Recurrent weights if Elman enabled
NFGModelComponent_Binary.cpp:29-32
Batch Norm Params
gamma/beta/mean/var if enabled
NFGModelComponent_Binary.cpp:34-40
Attention Weights
Guard flag bHasAttentionWeights
NFGModelComponent_Binary.cpp:85-117
EvoFeatureSnapshot
Optional evolved features
NFGModelComponent_Binary.cpp:119-142
Backward Compatibility
Safe EOF checks
NFGModelComponent_Binary.cpp:98-116
Quantization Payload
Base64 packed weights
NFGModelComponent_Serialization.cpp:36-157
NeuroDynamics Params
STDP rates, working memory
NFGModelComponent_Serialization.cpp:165-186
TSReLU Parameters
Per-neuron alpha/deadzone/hysteresis
NFGModelComponent_Serialization.cpp:236-243
MMS State
mode_gains, transition_matrix, internal_state
NFGModelComponent_Serialization.cpp:245-270
Working Memory Snapshot
Latches, hold frames, active flags
NFGModelComponent_Serialization.cpp:272-308
Per-Layer RNN
Elman/LSTM params per layer
NFGModelComponent_Serialization.cpp:310-391
AdditionalData Array
Polymorphic nested JSON
NFGModelComponent_Serialization.cpp:393-412
Pattern
Description
Version String
0.7200 = v0.7 + 200 commits
Optional Field Guards
bHasAttentionWeights, bHasEvoSnapshot
Legacy Enum Mapping
CrossoverMethod 8 → Uniform
Deprecated Placeholders
Dummy values preserve archive structure
Format
Extension - Use Case
Binary
.nfg, .dat - Fast disk storage
JSON
.json - Export, debugging
Agent Binary
.bin - Polymorphic data
CSV
.csv - Fitness tracking
Module
Type - Dependencies - Purpose
NeuroFluxGenesis
Runtime - Core, Engine, RenderCore, RHI - Main neural architecture
NFGBackendComputeShaders
Runtime - RenderCore, RHI, NeuroFluxGenesis - GPU compute backend
NFGAttentionEngine
Runtime - NeuroFluxGenesis, RenderCore - Attention mechanisms
NFGWorldPredictor
Runtime - NeuroFluxGenesis, RenderCore - Future state prediction
NFGTemporalRetention
Runtime - NeuroFluxGenesis, RenderCore - Multi-timescale memory
NFGNeuroDynamics
Runtime - NeuroFluxGenesis - STDP + Sleep replay
NFGMultiModulatorRMGA
Runtime - NeuroFluxGenesis - Neuromodulation
NFGMetaRegulator
Runtime - NeuroFluxGenesis - Meta-learning UCB
NFGMTDP
Runtime - NeuroFluxGenesis, RenderCore - Delay prediction
NFGLM
Runtime - NeuroFluxGenesis - Language model
NFGAudioComm
Runtime - NeuroFluxGenesis, AudioMixer - Agent communication
NFGVision
Runtime - RenderCore, RHI - Retina vision encoder
RaycastGPU
Runtime - RenderCore, RHI - GPU raycasting
NFGHallOfFittestPersistence
Runtime - NeuroFluxGenesis - Checkpoint system
NFGQuantization
Runtime - NeuroFluxGenesis - Bit-packing codec
TorqueStormPhysics
Runtime - Core, Engine - Vehicle physics
TrackGenerator
Runtime - Core, Engine - Procedural tracks
WeatherSystem
Runtime - Core, Engine - Environmental sim
Pattern
Description - Source
PublicDependencyModuleNames
API-exposed dependencies - All Build.cs files
PrivateDependencyModuleNames
Internal-only dependencies - All Build.cs files
PCHUsage.UseExplicitOrSharedPCHs
Precompiled header strategy - Standard across modules
bEnableUndefinedIdentifierWarnings
Strict compilation - NFGBackendComputeShaders
OptimizeCode = ModuleRules.CodeOptimization.InShippingBuildsOnly
Debug optimization - Core modules
Plugin
Shader Path - Source
NFGVision
/NFGVision/Private/
NFGVision.Build.cs
Kernel
Thread Config - Description - Source
MainCS
[32,1,1] - Standard forward pass
FeedForwardBatch2D.usf:1-50
MainCS_MMS
[32,1,1] - Multi-Mode State neurons
FeedForwardBatch2D.usf:52-180
MainCS_Elman
[32,1,1] - Recurrent network pass
FeedForwardBatch2D.usf:182-260
MainCS_LSTM
[32,1,1] - LSTM gate computation
FeedForwardBatch2D.usf:262-420
Function
Formula - Source
Pattern
Description - Source
Coalesced Load
Thread tid reads weight row tid
FeedForwardBatch2D.usf:85-95
Shared Memory Tiling
32×32 weight tiles in groupshared
FeedForwardBatch2D.usf:97-130
Wave Reduction
WaveActiveSum() for partial sums
FeedForwardBatch2D.usf:132-145
Bias Addition
Vector bias after activation
FeedForwardBatch2D.usf:147-155
Mode Selection
argmax over transition probabilities
FeedForwardBatch2D.usf:160-175
State Update
8 internal state variables per neuron
FeedForwardBatch2D.usf:177-195
Gain Modulation
Per-mode gain multipliers
FeedForwardBatch2D.usf:197-210
Transition Matrix
64-element (8×8) probability table
FeedForwardBatch2D.usf:212-230
State Decay
Exponential decay per neuron
FeedForwardBatch2D.usf:232-245
Gate
Formula - Source
Input (i)
σ(Wi·[h,x] + bi)
FeedForwardBatch2D.usf:280-295
Forget (f)
σ(Wf·[h,x] + bf)
FeedForwardBatch2D.usf:297-312
Cell (g)
tanh(Wg·[h,x] + bg)
FeedForwardBatch2D.usf:314-329
Output (o)
σ(Wo·[h,x] + bo)
FeedForwardBatch2D.usf:331-346
Cell State
f * c_prev + i * g
FeedForwardBatch2D.usf:348-360
Hidden State
o * tanh(c)
FeedForwardBatch2D.usf:362-375
Batch Size
Up to 1024 agents
FeedForwardBatch2D.usf:25
Agent Stride
MaxNeurons * sizeof(float)
FeedForwardBatch2D.usf:30
Layer Indexing
Prefix sum of layer sizes
FeedForwardBatch2D.usf:35-45
Async Dispatch
RDG graph scheduling
ComputeShadersComponent.cpp:2100
Kernel
Purpose - Lines
InitializePopulation
Zero-initialize mean/covariance - 1-45
SamplePopulation
Box-Muller Gaussian sampling - 47-120
ApplyBounds
Clamp to parameter bounds - 122-165
ComputeFitness
Fitness function evaluation - 167-230
SortByFitness
Bitonic sort on GPU - 232-340
SelectElites
Top-μ selection - 342-390
UpdateMean
Weighted recombination - 392-450
UpdateEvolutionPath_ps
Conjugate evolution path - 452-520
UpdateEvolutionPath_pc
Cumulation path - 522-590
UpdateCovariance
Rank-1 and rank-μ update - 592-750
DecomposeCovariance
Eigendecomposition (iterative) - 752-920
ComputeBD
B×D matrix for sampling - 922-980
AdaptStepSize
σ adaptation via path length - 982-1050
CheckTermination
Convergence criteria - 1052-1120
RestartStrategy
IPOP/BIPOP restart - 1122-1200
Operation
Complexity - Description - Source
Rank-1 Update
O(n²) - C += c1 * pc * pc^T
CMAES.usf:620-680
Rank-μ Update
O(μn²) - C += cμ * Σ wi * yi * yi^T
CMAES.usf:682-750
Eigendecomposition
O(n³) - Jacobi rotation method
CMAES.usf:752-920
Square Root
O(n²) - C^(1/2) = B * D
CMAES.usf:922-980
Path
Formula - Purpose - Source
p_σ
(1-cσ)·pσ + √(cσ(2-cσ)μeff)·C^(-1/2)·(m-m_old)/σ - Step size control
CMAES.usf:452-520
p_c
(1-cc)·pc + hσ·√(cc(2-cc)μeff)·(m-m_old)/σ - Covariance adaptation
CMAES.usf:522-590
Rank-k Storage
Only top-k eigenvectors stored
CMAES.usf:1202-1280
Incremental Update
Streaming eigenvector update
CMAES.usf:1282-1350
Memory Savings
O(nk) vs O(n²) for full
CMAES.usf:1352-1400
Accuracy Trade-off
Configurable k parameter
Config: EvolutionConfig.json
cσ
(μeff + 2) / (n + μeff + 5) - Learning rate for p_σ
CMAES.usf:990-1000
dσ
1 + 2·max(0, √((μeff-1)/(n+1))-1) + cσ - Damping factor
CMAES.usf:1002-1015
Expected
N(0,I) - - √n · (1 - 1/(4n) + 1/(21n²)) - Chi distribution
CMAES.usf:1017-1030
Strategy
Trigger - Action - Source
IPOP
Stagnation - Double population size
CMAES.usf:1122-1150
BIPOP
IPOP limit - Alternate large/small pop
CMAES.usf:1152-1180
TolX
σ * max(diag(C)) < 1e-12 - Convergence restart
CMAES.usf:1052-1070
TolFun
Fitness plateau - Historical fitness check
CMAES.usf:1072-1095
Operator
Description - Source
Schedule
Formula - Source
Bits
Values - Pack Ratio - Source
Function
Signature - Source
Function
Signature - Source
Spike-Timing Modulation
Scale adjusts based on spike correlation
NFGNeuroDynamicsProvider.cpp:420-480
LTP Scale Increase
Strong correlation → larger scale
NFGNeuroDynamicsProvider.cpp:482-510
LTD Scale Decrease
Weak correlation → smaller scale
NFGNeuroDynamicsProvider.cpp:512-540
Bounds Enforcement
Min/max scale limits
NFGNeuroDynamicsProvider.cpp:542-560
Scenario
FP32 - INT8 - INT4 - INT2
1M weights
4 MB - 1 MB - 512 KB - 256 KB
10M weights
40 MB - 10 MB - 5 MB - 2.5 MB
Bandwidth
1× - 4× - 8× - 16×
Widget
Purpose - Source
Real-time Update
60 FPS refresh rate - All widget Tick() methods
Mode
Description - Source
Algorithm
Description - Source
Optimization
Description - Source
Step
Description - Source
1. License Check
Validate license key
AuthentificationManager.cpp:1-80
2. JWT Request
Exchange key for token
AuthentificationManager.cpp:82-150
3. Token Storage
Secure token cache
AuthentificationManager.cpp:152-200
4. Token Refresh
Auto-refresh before expiry
AuthentificationManager.cpp:202-260
5. Request Signing
Bearer token in headers
AuthentificationManager.cpp:262-310
Operation
Endpoint - Source
Callback
Parameters - Source
Stage
Description - Source
1. Raw Input
Sensor data collection
NFGInputProcessor.cpp:1-80
Source
Neurons - Description - Source
Vision
2048 - NFGVision Retina features
NFGVisionSceneComponent.cpp
Method
Formula - Use Case - Source
MinMax
(x - min) / (max - min) - Bounded inputs
NFGInputProcessor.cpp:85-100
ZScore
(x - μ) / σ - Unbounded, Gaussian
NFGInputProcessor.cpp:102-120
Timescale
Alpha - Purpose - Source
Feature
Inputs - Output - Source
Buffer
Size - Update Rate - Source
Neuron-Coherent Crossover
Entire neuron units transferred, not individual weights
CPUComponent_Crossover.cpp:180-350
MMS State Crossover
8 internal states + 64 transition probs inherited together
CPUComponent_Crossover.cpp:352-520
LSTM Gate Crossover
All 4 gates (i/f/o/c) from same parent for coherence
CPUComponent_Crossover.cpp:522-750
GRU Gate Crossover
Reset + Update gates paired inheritance
CPUComponent_Crossover.cpp:752-920
Elman Context Crossover
Context weights + decay rates together
CPUComponent_Crossover.cpp:922-1050
Uniform
Random parent selection per neuron
CPUComponent_Crossover.cpp:1100-1180
SinglePoint
Split at random neuron index
CPUComponent_Crossover.cpp:1182-1260
TwoPoint
Two split points, middle from P2
CPUComponent_Crossover.cpp:1262-1350
LayerWise
Entire layers from single parent
CPUComponent_Crossover.cpp:1352-1440
Arithmetic
Weighted blend (α×P1 + (1-α)×P2)
CPUComponent_Crossover.cpp:1442-1530
BLX-α
Extended blend with exploration
CPUComponent_Crossover.cpp:1532-1620
SBX
Simulated Binary Crossover
CPUComponent_Crossover.cpp:1622-1750
Tournament
Per-neuron fitness-based selection
CPUComponent_Crossover.cpp:1752-1850
Parameter
Crossover Rule - Source
LeftCap/RightCap
Paired inheritance
CPUComponent_Crossover.cpp:1900-1950
LeftSlope/RightSlope
From same parent
CPUComponent_Crossover.cpp:1952-2000
Hysteresis
Blended (arithmetic)
CPUComponent_Crossover.cpp:2002-2040
Deadzone
Per-neuron coherent
CPUComponent_Crossover.cpp:2042-2100
SigmaScale
Layer-wise inheritance
CPUComponent_Crossover.cpp:2102-2150
Component
Count - Inheritance Rule - Source
MMSMode
1 per neuron - From parent with mode
CPUComponent_Crossover.cpp:2200-2250
MMSDecay
1 per neuron - Single value
CPUComponent_Crossover.cpp:2552-2600
MMSEta
1 per neuron - From parent
CPUComponent_Crossover.cpp:2602-2650
MMSStateInfluence
1 per neuron - From parent
CPUComponent_Crossover.cpp:2652-2700
MMSInputInfluence
1 per neuron - From parent
CPUComponent_Crossover.cpp:2702-2750
BitWidth Inheritance
Per-neuron bit width preserved
CPUComponent_Crossover.cpp:2800-2860
Scale Factor Transfer
Quantization scale from parent
CPUComponent_Crossover.cpp:2862-2920
Zero-Point Inheritance
Asymmetric quant zero-point
CPUComponent_Crossover.cpp:2922-2980
Dequant-Crossover-Requant
Full precision during crossover
CPUComponent_Crossover.cpp:2982-3050
Architecture
Coherence Constraint - Source
LSTM
All 4 gates + cell state from same parent
CPUComponent_Crossover.cpp:3100-3250
GRU
Reset + Update paired, candidate separate
CPUComponent_Crossover.cpp:3252-3400
Elman
Hidden + Context from same parent
CPUComponent_Crossover.cpp:3402-3500
Peephole
Cell-to-gate weights with cell
CPUComponent_Crossover.cpp:3502-3600
Utility
Description - Source
ParentSelector
Fitness-proportionate, tournament, rank
NFGCrossoverUtils.cpp:50-180
CrossoverMask
Binary mask for uniform crossover
NFGCrossoverUtils.cpp:182-260
BlendCoefficients
α generation for arithmetic/BLX
NFGCrossoverUtils.cpp:262-340
NeuronBoundaryDetector
Find coherent unit boundaries
NFGCrossoverUtils.cpp:342-450
InheritanceValidator
Verify coherence constraints
NFGCrossoverUtils.cpp:452-550
Stage
Description - Source
1. Parent Selection
Choose 2 parents from population
CPUComponent_Crossover.cpp:3700-3780
2. Crossover Point(s)
Determine split locations
CPUComponent_Crossover.cpp:3782-3850
3. Gene Transfer
Copy neuron units
CPUComponent_Crossover.cpp:3852-3950
4. Constraint Check
Verify coherence
CPUComponent_Crossover.cpp:3952-4020
5. Mutation
Optional post-crossover mutation
CPUComponent_Crossover.cpp:4022-4100
6. Fitness Init
Reset fitness for new child
CPUComponent_Crossover.cpp:4102-4165
FRDGBuilder
Render Dependency Graph builder
ComputeShadersComponent.cpp:1200-1350
Pass Registration
AddPass<FComputeShaderRDG>() pattern
ComputeShadersComponent.cpp:1352-1500
Resource Transitions
UAV→SRV, SRV→UAV automatic
ComputeShadersComponent.cpp:1502-1650
Fence Synchronization
GPU fence for async completion
ComputeShadersComponent.cpp:1652-1800
Pattern
Description - Source
CreateBuffer
FRDGBufferDesc with size/stride
ComputeShadersComponent.cpp:1850-1950
CreateUAV
Unordered access view creation
ComputeShadersComponent.cpp:1952-2050
CreateSRV
Shader resource view creation
ComputeShadersComponent.cpp:2052-2150
External Buffers
RegisterExternalBuffer() for persistent
ComputeShadersComponent.cpp:2152-2280
Pass Type
Description - Source
FeedForward
Neural network forward pass
ComputeShadersComponent.cpp:2300-2500
STDP
Spike-timing plasticity update
ComputeShadersComponent.cpp:2502-2650
CMA-ES
Evolution strategy kernels
ComputeShadersComponent.cpp:2652-2900
Crossover
Genetic crossover on GPU
ComputeShadersComponent.cpp:2902-3100
Mutation
Weight mutation kernels
ComputeShadersComponent.cpp:3102-3250
Attention
Multi-head attention
ComputeShadersComponent.cpp:3252-3450
WorldPredictor
Predictive model forward
ComputeShadersComponent.cpp:3452-3650
TemporalRetention
Memory EMA update
ComputeShadersComponent.cpp:3652-3800
Quantization
Quant/Dequant kernels
ComputeShadersComponent.cpp:3802-3950
Telemetry
Statistics readback
ComputeShadersComponent.cpp:3952-4100
VehiclePhysics
Physics simulation
ComputeShadersComponent.cpp:4102-4350
Raycast
GPU raycasting
ComputeShadersComponent.cpp:4352-4550
AsyncCompute Queue
Separate compute queue
ComputeShadersComponent.cpp:4600-4700
Overlap with Graphics
Parallel execution
ComputeShadersComponent.cpp:4702-4800
Fence Wait
Synchronization points
ComputeShadersComponent.cpp:4802-4900
Priority Hints
ERDGAsyncCompute flags
ComputeShadersComponent.cpp:4902-5000
Pattern
Description - Source
Transient
Single-frame buffers
ComputeShadersComponent.cpp:5050-5150
Persistent
Multi-frame buffers
ComputeShadersComponent.cpp:5152-5280
Pooled
Reused allocations
ComputeShadersComponent.cpp:5282-5400
External
User-managed buffers
ComputeShadersComponent.cpp:5402-5500
Pattern
Description - Source
Direct Dispatch
DispatchComputeShader()
ComputeShadersComponent.cpp:5550-5650
Indirect Dispatch
GPU-driven dispatch count
ComputeShadersComponent.cpp:5652-5780
Multi-Dispatch
Sequential kernel chain
ComputeShadersComponent.cpp:5782-5900
Batched Dispatch
Multiple passes per frame
ComputeShadersComponent.cpp:5902-6050
Barrier Type
Description - Source
UAV Barrier
Write-after-write
ComputeShadersComponent.cpp:6100-6180
SRV Barrier
Read-after-write
ComputeShadersComponent.cpp:6182-6260
Aliasing Barrier
Buffer reuse
ComputeShadersComponent.cpp:6262-6340
Global Barrier
Full pipeline flush
ComputeShadersComponent.cpp:6342-6420
RDG Validation
Debug mode checks
ComputeShadersComponent.cpp:6470-6550
Resource Tracking
Leak detection
ComputeShadersComponent.cpp:6552-6630
Pass Ordering
Dependency validation
ComputeShadersComponent.cpp:6632-6710
Size Verification
Buffer bounds checking
ComputeShadersComponent.cpp:6712-6800
Stage
Description - Source
Stage
Description - Source
Stage
Description - Source
F0
50-500 Hz - Fundamental frequency
NFGAudioCommSynthComponent.cpp:45-60
Voicing
0-1 - Voiced/unvoiced ratio
NFGAudioCommSynthComponent.cpp:62-75
Breathiness
0-1 - Noise injection
NFGAudioCommSynthComponent.cpp:77-90
Jitter
0-0.1 - F0 random variation
NFGAudioCommSynthComponent.cpp:92-105
Shimmer
0-0.1 - Amplitude variation
NFGAudioCommSynthComponent.cpp:107-120
Tremolo Rate
0-10 Hz - AM modulation rate
NFGAudioCommSynthComponent.cpp:122-135
Tremolo Depth
0-1 - AM modulation depth
NFGAudioCommSynthComponent.cpp:137-150
Vibrato Rate
0-10 Hz - FM modulation rate
NFGAudioCommSynthComponent.cpp:152-165
Vibrato Depth
0-50 Hz - FM modulation depth
NFGAudioCommSynthComponent.cpp:167-180
F1 Freq
200-1000 Hz - First formant
NFGAudioCommSynthComponent.cpp:182-195
F1 BW
50-200 Hz - First formant bandwidth
NFGAudioCommSynthComponent.cpp:197-210
F2 Freq
700-2500 Hz - Second formant
NFGAudioCommSynthComponent.cpp:212-225
F2 BW
70-300 Hz - Second formant bandwidth
NFGAudioCommSynthComponent.cpp:227-240
F3 Freq
2000-3500 Hz - Third formant
NFGAudioCommSynthComponent.cpp:242-255
F3 BW
100-400 Hz - Third formant bandwidth
NFGAudioCommSynthComponent.cpp:257-270
Nasality
0-1 - Nasal cavity coupling
NFGAudioCommSynthComponent.cpp:272-285
Tenseness
0-1 - Glottal tension
NFGAudioCommSynthComponent.cpp:287-300
Attack
0-0.1 s - Onset time
NFGAudioCommSynthComponent.cpp:302-315
Release
0-0.2 s - Offset time
NFGAudioCommSynthComponent.cpp:317-330
Volume
0-1 - Output amplitude
NFGAudioCommSynthComponent.cpp:332-345
Open Phase
Glottal pulse rising edge
NFGAudioCommSynthComponent.cpp:380-420
Return Phase
Glottal pulse falling edge
NFGAudioCommSynthComponent.cpp:422-460
Closed Phase
Inter-pulse silence
NFGAudioCommSynthComponent.cpp:462-500
Aspiration Noise
Breath noise during open
NFGAudioCommSynthComponent.cpp:502-540
OQ Ratio
Open quotient (0.3-0.7)
NFGAudioCommSynthComponent.cpp:542-570
Filter
Order - Type - Source
Phoneme
F1 - F2 - F3 - Source
SpeakerComponent
Per-agent sound emitter
NFGAudioCommSpeakerComponent.cpp:30-100
ListenerComponent
Per-agent sound receiver
NFGAudioCommSpeakerComponent.cpp:102-180
Distance Attenuation
1/r² falloff
NFGAudioCommSpeakerComponent.cpp:182-240
Directional Gain
Cone-based attenuation
NFGAudioCommSpeakerComponent.cpp:242-300
Occlusion
Line-of-sight blocking
NFGAudioCommSpeakerComponent.cpp:302-360
Multi-Agent Mixing
Sum of all audible speakers
NFGAudioCommSpeakerComponent.cpp:362-420
Agent Registry
Track all AudioComm agents
NFGAudioCommWorldSubsystem.cpp:40-100
Spatial Hashing
Fast neighbor queries
NFGAudioCommWorldSubsystem.cpp:102-180
Batch Processing
Update all agents per frame
NFGAudioCommWorldSubsystem.cpp:182-250
Audio Buffer Pool
Reusable sample buffers
NFGAudioCommWorldSubsystem.cpp:252-320
State
Description - Transitions To - Source
Clear
Sunny, no clouds - Cloudy, Overcast
NFGWeatherStateMachine.cpp:40-70
Cloudy
Partial clouds - Clear, Overcast, LightRain
NFGWeatherStateMachine.cpp:72-105
Overcast
Full cloud cover - Cloudy, LightRain, Snow
NFGWeatherStateMachine.cpp:107-140
LightRain
Drizzle - Cloudy, HeavyRain, Overcast
NFGWeatherStateMachine.cpp:142-175
HeavyRain
Downpour - LightRain, Thunderstorm
NFGWeatherStateMachine.cpp:177-210
Thunderstorm
Lightning + Heavy Rain - HeavyRain
NFGWeatherStateMachine.cpp:212-250
Snow
Light snowfall - Overcast, Blizzard
NFGWeatherStateMachine.cpp:252-285
Blizzard
Heavy snow + wind - Snow
NFGWeatherStateMachine.cpp:287-320
From
To - Base Probability - Source
Clear→Cloudy
0.15 per hour - Temperature-modulated
NFGWeatherStateMachine.cpp:350-380
Cloudy→LightRain
0.25 per hour - Humidity-dependent
NFGWeatherStateMachine.cpp:382-410
LightRain→HeavyRain
0.30 per hour - Pressure-based
NFGWeatherStateMachine.cpp:412-440
HeavyRain→Thunder
0.20 per hour - Instability index
NFGWeatherStateMachine.cpp:442-470
Front Type
Description - Effects - Source
Cold Front
Cold air advancing - Rapid temp drop, storms
NFGWeatherFrontManager.cpp:50-120
Warm Front
Warm air advancing - Gradual warm, steady rain
NFGWeatherFrontManager.cpp:122-190
Occluded Front
Cold overtaking warm - Complex precipitation
NFGWeatherFrontManager.cpp:192-260
Stationary Front
No movement - Prolonged conditions
NFGWeatherFrontManager.cpp:262-320
Parameter
Calculation - Source
Lapse Rate
-6.5°C per 1000m
NFGIntegratedWeatherSystem.cpp:80-110
Dew Point
Magnus formula
NFGIntegratedWeatherSystem.cpp:112-150
CAPE
Convective Available Potential Energy
NFGIntegratedWeatherSystem.cpp:152-200
Lifted Index
Atmospheric stability
NFGIntegratedWeatherSystem.cpp:202-250
K-Index
Thunderstorm potential
NFGIntegratedWeatherSystem.cpp:252-300
Type
Intensity Range - Accumulation - Source
Drizzle
0.1-0.5 mm/hr - Track wetness
NFGWeatherSimulationComponent.cpp:100-140
Light Rain
0.5-2.5 mm/hr - Puddle formation
NFGWeatherSimulationComponent.cpp:142-180
Moderate Rain
2.5-7.5 mm/hr - Standing water
NFGWeatherSimulationComponent.cpp:182-220
Heavy Rain
7.5-50 mm/hr - Flooding
NFGWeatherSimulationComponent.cpp:222-260
Snow
1-5 cm/hr - Snow accumulation
NFGWeatherSimulationComponent.cpp:262-300
Factor
Impact - Formula - Source
Rain Intensity
Reduces visibility - vis = 10000 / (1 + rain×5)
NFGWeatherSimulationComponent.cpp:350-380
Fog Density
Exponential decay - vis = -log(0.02) / density
NFGWeatherSimulationComponent.cpp:382-410
Snow Rate
Scatter-based - vis = 1000 / (snow×2)
NFGWeatherSimulationComponent.cpp:412-440
Dust/Sand
Particle count - vis = 5000 / (1 + dust×10)
NFGWeatherSimulationComponent.cpp:442-470
Base Wind
Prevailing direction/speed
NFGWeatherSimulationComponent.cpp:500-540
Gusts
Random intensity spikes
NFGWeatherSimulationComponent.cpp:542-580
Diurnal Cycle
Day/night temperature swing
NFGIntegratedWeatherSystem.cpp:400-450
Solar Heating
Afternoon convection
NFGIntegratedWeatherSystem.cpp:452-500
Nocturnal Cooling
Radiation fog potential
NFGIntegratedWeatherSystem.cpp:502-550
Buffer
Type - Size - Description - Source
Buffer
Type - Size - Description - Source
Buffer
Type - Size - Description - Source
Buffer
Type - Size - Description - Source
Buffer
Type - Size - Description - Source
Buffer
Type - Size - Description - Source
Buffer
Type - Size - Description - Source
Buffer
Type - Size - Description - Source
Buffer
Type - Size - Description - Source
Plugin
Test Files - Test Cases - Source Path
NFGBackendComputeShaders
32 - 95+
Plugins/NFGBackendComputeShaders/.../Tests/
NeuroFluxGenesis Core
28 - 85+
Plugins/NeuroFluxGenesis/.../Tests/
NFGAttentionEngine
12 - 35+
Plugins/NFGAttentionEngine/.../Tests/
NFGWorldPredictor
11 - 32+
Plugins/NFGWorldPredictor/.../Tests/
NFGMultiModulatorRMGA
9 - 28+
Plugins/NFGMultiModulatorRMGA/.../Tests/
NFGTemporalRetention
8 - 22+
Plugins/NFGTemporalRetention/.../Tests/
NFGNeuroDynamics
7 - 18+
Plugins/NFGNeuroDynamics/.../Tests/
NFGLM
14 - 40+
Plugins/NFGLM/.../Tests/
NFGMetaRegulator
8 - 20+
Plugins/NFGMetaRegulator/.../Tests/
NFGMTDP
6 - 15+
Plugins/NFGMTDP/.../Tests/
NFGVision
5 - 12+
Plugins/NFGVision/.../Tests/
NFGAudioComm
8 - 18+
Plugins/NFGAudioComm/.../Tests/
Category
Count - Description - Examples
Guard Tests
45+ - Invariant/precondition checks
*GuardTests.cpp
GPU Kernel Tests
35+ - Shader correctness
ComputeShader*Tests.cpp
Integration Tests
28+ - Multi-component flows
*E2E_Spec.cpp
Unit Tests
65+ - Single function/class
*Tests.cpp
Boundary Tests
20+ - Edge cases
*BoundsTests.cpp
Performance Tests
8+ - Timing/throughput
*PerformanceTests.cpp
Test Suite
File - Description - Source
CMA-ES Covariance 2D
ComputeShaderCMAESCov2DTests.cpp - Full matrix tests - Lines 1-350
CMA-ES Error Flags
ComputeShaderCMAESErrorFlagTests.cpp - Divergence detection - Lines 1-280
STDP Order Tests
ComputeShaderStdpAttentionOrderTests.cpp - Spike timing - Lines 1-320
Crossover Method Tests
CPUComponentCrossoverMethodTests.cpp - All 8 methods - Lines 1-450
HoF Selection Tests
CMAESHoFSelectionTests.cpp - Elite persistence - Lines 1-280
Prediction Readback
ComputeShaderPredictionReadbackToggleTests.cpp - GPU→CPU transfer - Lines 1-220
Test Helpers
Mock providers, fixtures
Helpers/*.h
TestWorldPredictorProvider
Mock predictor
TestWorldPredictorProvider.h
TestFitnessComponent
Mock fitness
TestFitnessComponent.h
TestMTDPProvider
Mock MTDP
TestMTDPProvider.h
ComputeShaderTestHelpers
GPU test utilities
ComputeShaderTestHelpers.h
Pattern
Description - Example
Invariant Guards
Check class invariants - TestThat(X, Invariant())
Precondition Guards
Validate inputs - TestThat(Input, IsValid())
Postcondition Guards
Verify outputs - TestThat(Output, InRange())
State Guards
Check state machine - TestThat(State, IsConsistent())
Resource Guards
Verify allocations - TestThat(Buffer, IsAllocated())
Step
Description - Source
Area
Gap - Recommendation
AudioComm Synthesis
Limited phoneme tests - Add coarticulation tests
Weather FSM
No transition probability tests - Add Monte Carlo tests
NFGVision Gaze
No multi-eye tests - Add stereo depth tests
Quantization
Limited mixed-precision
Add 1/2/4/8-bit combos
Sleep Replay
No async timing tests - Add race condition tests
Command
Description
UE5Editor -run=NFGTests
Run all NFG tests
UE5Editor -run=NFGTests.GPU
GPU-specific tests
UE5Editor -run=NFGTests.Guard
Guard tests only
UE5Editor -run=NFGTests.NFGLM
Language model tests
UE5Editor -run=NFGTests.Integration
Integration tests
Plugin/System
Features - LOC
NeuroFluxGenesis Core
120+ - ~195K
NFGBackendComputeShaders
150+ - ~26K shader
NFGMultiModulatorRMGA
45 - ~8K
NFGAttentionEngine
25 - ~5K
NFGTemporalRetention
20 - ~3K
NFGNeuroDynamics
50 - ~4K
NFGWorldPredictor
60+ - ~12K
NFGLM
15 systems - ~5K
NFGAudioComm
50 - ~6K
NFGVision
87 - ~8K
NFGMetaRegulator
35 - ~4K
NFGMTDP
25 - ~2K
Config/Serialization System
170+ - ~15K
Weather Simulation
60+ - ~8K
Input/Output Processing
50+ - ~6K
Telemetry & Debugging
80+ - ~10K
Evolution Orchestration
40+ - ~12K
GPU Raycasting (RaycastGPU)
100+ - ~8K shader
TorqueStorm Vehicle Physics
20 - ~5K
TrackGenerator
56 - ~5K
NFGQuantization
54 - ~3K
HallOfFittest Persistence
37 - ~4K
GPU Vehicle Simulation
62 - ~77K shader
GPU RNN (LSTM/GRU/Elman)
48 - ~70K shader
GPU Physics Engine
94 - ~62K shader
GPU Analytics & Statistics
36 - ~10K shader
AgentData System
32 - ~3K
Camera Systems
75 - ~4K
Mutation System
28 - ~3K
GPU Crossover System
47 - ~5K shader
Visualization System
45 - ~6K
NFGManager Subsystems
133 - ~18K
Backend & Provider Interfaces
60 - ~4K
Profile & Version System
59 - ~5K
Sleep Replay System
51 - ~2K
Kernel Components
67 - ~2K
Statistics & Monitoring
77 - ~2K
Weather Subsystems Extended
287 - ~8K
WorldPredictor GPU Shaders
89 - ~2K shader
Model Component Helpers
66 - ~3K
Orchestration Components
56 - ~2K
Debug & Vehicle Systems
87 - ~5K
GPU Shader Architecture
200+ - ~60K shader
Configuration System
1,030+ params - ~15K JSON
Provider & Interface Patterns
12 interfaces - ~2K
Logging & Telemetry
52 categories - ~4K
Serialization & Persistence
150+ - ~5K
Build System & Module Dependencies
18 modules - ~2K
FeedForward Shader Implementation
85 - ~4K shader
CMA-ES GPU Kernels
35 kernels - ~1.6K shader
Crossover & Mutation Shaders
95 - ~3K shader
Quantization Codec Details
42 - ~1K shader
Widget & UI System
31 widgets - ~4K
Remote IO & Authentication
48 - ~3K
Input Processing Pipeline
65 - ~2K
CPU Crossover Implementation
115 - ~4K
RDG Shader Dispatch Pipeline
78 - ~6K
NFGLM Tokenizer & Decoder
42 - ~1K
AudioComm Synthesis Internals
68 - ~2K
NFGVision Retina System
87 - ~8K
Weather State Machine Internals
72 - ~3K
GPU Structured Buffer Layouts
120+ buffers - ~4K header
Technique
Novelty - Section
MMS Neurons
Learnable state machines per neuron - 1.1
TS-ReLU
8 evolvable parameters per neuron - 1.2
GPU CMA-ES
Full eigendecomposition on GPU - 2.2
STDP Scale Evolution
Quantization via spike-timing - 1.5
4-Channel Neuromodulation
DA/NE/ACh/5-HT with decorrelation - 3.1
8-Timescale Memory
EMA cascade for temporal integration - 4.3
Coherent Neuron Crossover
Preserve neuron integrity in genetics - 1.6
What-If Rollouts
Counterfactual reasoning engine - 6.2
Emergent Communication
Evolved speech protocol - 8.5
Predictive Coding STDP
Prediction error modulates plasticity - 5.3
Sleep Replay
Offline memory consolidation - 5.4
UCB Meta-Learning
Bandit-based output optimization - 10.1
NFGLM
Evolved language model (no backprop) - 7.0
2-64 Bit Quantization
Per-neuron evolved bit-depth - 13.3
Atmospheric Weather Physics
Realistic pressure cells + lapse rate + CAPE - 14.2
320K GPU Rays/Frame
BVH-accelerated raycasting - 18.1
Sector Aggregation
360 rays → 24 network inputs - 18.2
50+ Console Commands
Runtime debugging infrastructure - 16.2
Architecture Hash Versioning
Model compatibility verification - 13.4
6-Mode Visualization
Real-time neural network display - 16.3
17 JSON Config System
Complete hyperparameter externalization - 13.1
TorqueStorm SOA Physics
1000+ vehicles via Structure-of-Arrays - 19.1
Ackermann Steering
Geometrically accurate turning - 19.2
Procedural Track Generation
Perlin noise + hill-climbing optimization - 20.1
KD-Tree Spline Cache
O(log n) nearest-point queries - 20.3
Pacejka Magic Formula
Industry-standard tire physics - 23.1
GPU GJK/EPA Collision
Full narrowphase on GPU - 25.2
Sequential Impulse Solver
Constraint-based physics - 25.3
GPU LSTM/GRU Gates
Full RNN on GPU with RMGA - 24.1
Per-Gate RMGA Modulation
4 neuromodulator channels per gate - 24.4
GPU Population Statistics
Box-Muller + fitness-weighted means - 26.1
Binary Search Elite Insertion
O(log N) Hall of Fittest - 22.1
Type-Safe AgentData
8 genetic data types with virtual crossover - 27.1
6-DOF Free Camera
Acceleration-based navigation system - 28.1
NFG Vision Gaze Control
AI-controlled scene depth capture - 28.3
Adaptive Mutation Scheduling
6 rate strategies including cosine annealing - 29.2
GPU SBX Crossover
Simulated Binary Crossover on GPU - 30.1
Neuron-Coherent Crossover
Preserves neuron integrity during genetics - 30.1
6-Mode Visualization
Real-time weight/activation/gradient display - 31.1
HISM Neural Rendering
Instanced mesh for thousands of neurons - 31.2
12-Subsystem NFGManager
Modular orchestration architecture - 32
12 Provider Interfaces
Extensible plugin architecture - 33
Profile Hot-Swap
Live config reload without restart - 34.1
11-File Config Merging
Distributed hyperparameter management - 34.2
Sleep Replay Consolidation
Biology-inspired experience replay - 35.1
Priority-Based Sampling
High-reward experience selection - 35.3
10 Activation Functions
Tanh to GELU with derivatives - 36.3
13 Weight Init Strategies
Xavier to Adaptive selection - 40.1
Multi-Scale Death Tracking
Minute/Hour/Day statistics - 37.1
Kernel Performance Monitor
GFLOPS + bandwidth estimation - 37.4
Weather Front Physics
Geostrophic + thermal wind - 38.2
8-State Weather Machine
Probabilistic state transitions - 38.3
100x100 Atmospheric Grid
Spatial weather simulation - 38.4
DreamerV3 Action Context
Multi-frame history injection - 39.1
What-If Planning
Danger + confidence scoring - 39.2
Counterfactual Feedback
Per-query error deltas - 39.3
Orchestration Layer
5-component coordination - 41
12-State Tutorial Animation
Interactive NN visualization - 42.5
Wave-Level Attention
WaveActiveSum() for intra-warp sums - 43.1
Half-Precision Q/K/V
4× bandwidth reduction in attention - 43.1
Attention De-Gating STDP
Recover pre-attention activation for learning - 43.4
Welford's Online Z-Score
Streaming normalization for RMGA - 43.5
Serotonin De-Correlation
Remove DA component from 5-HT signal - 43.5
105-File Test Suite
350+ test cases across 17 plugins - 44
1,030+ Config Parameters
15 JSON files for complete tunability - 45
12 Provider Interfaces
Modular extensibility pattern - 46
3,277+ Blueprint Items
Full Blueprint scripting support - 47
103 Console Variables
Runtime tuning for all subsystems - 48
25 Log Categories
Comprehensive diagnostic infrastructure - 49
FArchive Binary Format
Half-precision with backward compat - 50.1
Base64 Quantization Payload
Compact JSON weight serialization - 50.2
18-Module Plugin Architecture
Modular UE5 plugin dependency graph - 51.1
Shader Directory Registration
Build.cs shader path management - 51.4
6-Kernel FeedForward GPU
Standard/MMS/Elman/LSTM/GRU/TSReLU - 52.1
10 GPU Activation Functions
Tanh→Mish with wave-level reduction - 52.2
35-Kernel CMA-ES GPU
Full eigendecomposition on GPU - 53.1
Low-Rank Covariance
O(nk) vs O(n²) memory - 53.4
IPOP/BIPOP Restart
Automatic population resizing - 53.6
6 GPU Crossover Methods
Uniform/SinglePoint/SBX/Arithmetic/BLX-α - 54.1
Neuron-Coherent Swap
Preserve all weights to single neuron - 54.3
6 Mutation Rate Schedules
Cosine annealing + warm restart - 54.5
PCG + Box-Muller RNG
Thread-safe GPU random generation - 54.7
1/2/4/8-Bit Pack/Unpack
32/16/8/4 values per uint32 - 55.1
STDP-Evolved Quantization Scales
Spike timing modulates precision - 55.5
31 Custom Slate Widgets
Real-time NN visualization - 56.1
6 Visualization Modes
Weights/Activations/Gradients/Attention/MMS/Spikes - 56.3
5 Layout Algorithms
Grid/Force-Directed/Hierarchical/Circular - 56.4
JWT Authentication Flow
License→Token→Refresh→Sign - 57.2
Architecture Hash Filtering
Only download compatible models - 57.4
7-Stage Input Pipeline
Raw→Normalize→Slot→Temporal→Feature→Gate→Buffer - 58.1
15 Input Source Types
Raycast/Velocity/Depth/Audio/Memory - 58.2
4 Normalization Methods
MinMax/ZScore/Tanh/Log - 58.3
Priority Slot Reservation
Conflict-free input mapping - 58.4
4,165-Line CPU Crossover
Complete genetic operator implementation - 59.1
8 Crossover Strategies
Uniform/SinglePoint/TwoPoint/LayerWise/Arithmetic/BLX-α/SBX/Tournament - 59.2
Neuron-Coherent MMS Crossover
8 states + 64 transitions inherited together - 59.4
LSTM/GRU Gate Coherence
All 4 gates from same parent for integrity - 59.6
Quantization-Aware Crossover
Dequant→Crossover→Requant pipeline - 59.5
RDG Shader Dispatch
FRDGBuilder with automatic resource transitions - 60.1
12 RDG Pass Types
FeedForward/STDP/CMA-ES/Crossover/Attention/WorldPredictor - 60.3
Async Compute Overlap
Parallel compute + graphics execution - 60.4
4-Tier Buffer Lifetime
Transient/Persistent/Pooled/External - 60.5
UTF-8 Byte-Level Tokenizer
256 vocab, no BPE, direct byte encoding - 61.1
Mixed-Radix 4×4 Decoder
16 outputs → 256 tokens - 61.4
Deterministic LM Decoding
Pure argmax, no sampling/temperature - 61.5
7-Stage Sequence Runner
Init→Read→Write→Decode→EOS→MaxLen→Assemble - 61.6
20-Parameter AudioComm
F0/Voicing/Formants/Tremolo/Vibrato - 62.1
Rosenberg Glottal Model
Open/Return/Closed phases with aspiration - 62.2
3×2nd-Order Formant Filters
IIR bandpass for F1/F2/F3 - 62.3
9-Phoneme Interpolation
A/E/I/O/U/M/N/S/SH with coarticulation - 62.4
Speaker/Listener System
Distance attenuation + directional gain + occlusion - 62.6
Per-Agent Depth Capture
Individual SceneCaptureComponent per agent - 63.1
5-Parameter Gaze Control
Yaw/Pitch/Roll/FOV/FocusDistance - 63.2
Depth Packing Formats
R8/R16F/R32F/RGBA8 with log encoding - 63.5
Foveated Multi-Eye
High-res center, low-res periphery - 63.6
8-State Weather FSM
Clear→Cloudy→Rain→Thunder→Snow→Blizzard - 64.1
4 Weather Front Types
Cold/Warm/Occluded/Stationary - 64.3
Atmospheric CAPE/K-Index
Real-time convective stability - 64.4
5-Level Precipitation Model
Drizzle→Light→Moderate→Heavy→Snow - 64.5
4-Factor Visibility Calculation
Rain/Fog/Snow/Dust interaction - 64.6
120+ GPU Structured Buffers
Complete neural architecture on GPU - 65.1
MMS Buffer Suite
Mode/Gain/Bias/Transition/State/Decay/Eta - 65.2
CMA-ES Buffer Suite
Mean/Covariance/Eigen/Sigma/Paths/Samples - 65.4
RMGA 4-Channel Buffers
DA/5-HT/NE/ACh with variance tracking - 65.6
148-File Test Suite
Comprehensive coverage across 12 plugins - 66.1
6 Test Categories
Guard/GPU/Integration/Unit/Boundary/Performance - 66.2
GPU Test Methodology
Setup→Upload→Dispatch→Readback→Verify - 66.6
Coverage Gap Analysis
Identified 5 areas for improvement - 66.7
Biological Retina Encoder
2048 semantic features from raw pixels - 66.1
ON/OFF Temporal Pathways
Separate approaching/receding detectors - 66.2
Color Opponency (RG/BY)
Parvocellular/Koniocellular cell models - 66.2
Multi-Scale DoG (3 levels)
Fine/Medium/Coarse center-surround - 66.3
4-Direction Orientation Energy
V1 simple cell model (0°/45°/90°/135°) - 66.4
Reichardt Motion Correlators
Biological motion detection in 4 directions - 66.5
Fovea + Periphery Pooling
8×8 center + 4×4 surround (80 regions) - 66.6
24-Channel Feature Vector
Depth/Luma/Color/Motion/Orientation per region - 66.7
97% Data Compression
65K pixels → 2048 semantic floats - 66.13
GBuffer-Based Capture
Single render pass for Depth+Normals+Color - 66.1
GBuffer Capture Mode
Single base pass → SceneTextures gather (Depth+Normals+BaseColor)
NFGVisionViewExtension.cpp:289-441
CustomRenderPass Integration
UE5 FCustomRenderPassBase with per-slice rendering
NFGVisionViewExtension.cpp:67-286
Texture2DArray Output
All agents in single array texture (slices = agents)
NFGVisionViewExtension.cpp:879-913
Staggered Updates
Reuse previous frame textures for partial updates
NFGVisionViewExtension.cpp:444-460
ShowOnly/Hidden Filtering
Primitive visibility control per capture
NFGVisionViewExtension.cpp:545-601
Deferred Shading Support
Depth/Normals from GBuffer, BaseColor from base pass
NFGVisionGBufferGather.usf:1-38
4 Output Channels
Depth, WorldNormals, SceneColor, BaseColor
NFGVisionBackend.h:77-92
Feature
Formula/Description - Biological Analogon - Source
Depth Normalization (D)
D = rawDepth / MaxDistanceCm - Distance perception
NFGRetinaPreprocess.usf:106
Temporal Depth Delta (dD)
dD = D - prevD - Looming detection (collision avoidance)
NFGRetinaPreprocess.usf:108
Luminance (Y)
Y = 0.2126*R + 0.7152*G + 0.0722*B - Magnocellular pathway - NFGRetinaCommon.ush
Gradient Magnitude (Gn)
Gn = tanh(sqrt(Yx² + Yy²) / S_G) - Edge detection (V1 simple cells)
NFGRetinaPreprocess.usf:127-128
Red-Green Opponency (RGn)
RGn = tanh((R - G) / S_RG) - Parvocellular P-cells
NFGRetinaPreprocess.usf:131-132
Blue-Yellow Opponency (BYn)
BYn = tanh((B - 0.5*(R+G)) / S_BY) - Koniocellular K-cells
NFGRetinaPreprocess.usf:133
Surface Inclination (Inc)
Inc = 0.5 * (1 - Nz) - Surface orientation
NFGRetinaPreprocess.usf:141
Normal Edge (Nedge)
Nedge = tanh(dN / S_N) - Object boundary detection
NFGRetinaPreprocess.usf:142-143
Depth ON-Cell
depthOn = max(0, dD) - Approaching objects
NFGRetinaPreprocess.usf:145
Depth OFF-Cell
depthOff = max(0, -dD) - Receding objects
NFGRetinaPreprocess.usf:146
Luma ON-Cell
lumaOn = max(0, dY) - Brightening regions
NFGRetinaPreprocess.usf:147
Luma OFF-Cell
lumaOff = max(0, -dY) - Darkening regions
NFGRetinaPreprocess.usf:148
Scale
Center Radius - Surround Radius - Function - Source
Fine
1 pixel - 2 pixels - Edge detection
NFGRetinaPreprocess.usf:150-152
Medium
2 pixels - 4 pixels - Texture boundaries
NFGRetinaPreprocess.usf:154-156
Coarse
4 pixels - 8 pixels - Large-scale structure
NFGRetinaPreprocess.usf:158-160
Orientation
Formula - Description - Source
0° (Horizontal)
e0 = abs(Yx) - Horizontal edges
NFGRetinaPreprocess.usf:175
45° (Diagonal)
e45 = abs(k*(Yx + Yy)) - Diagonal edges
NFGRetinaPreprocess.usf:177
90° (Vertical)
e90 = abs(Yy) - Vertical edges
NFGRetinaPreprocess.usf:176
135° (Anti-Diagonal)
e135 = abs(k*(Yx - Yy)) - Anti-diagonal edges
NFGRetinaPreprocess.usf:178
Correlator Model
d = abs((S - P) * (S_neighbor - P_neighbor))
NFGRetinaPool.usf:215-218
4-Direction Detectors
0°, 45°, 90°, 135° motion axes
NFGRetinaPool.usf:206-213
Noise Floor Subtraction
E = max(0, d - NOISE_FLOOR)
NFGRetinaPool.usf:220-223
Motion Magnitude
Sum of 4 directional energies
NFGRetinaPool.usf:229
Motion Direction Vector
(Vx, Vy) = weighted sum of directions
NFGRetinaPool.usf:278-282
Sin/Cos Output
Normalized direction as (sin, cos) pair
NFGRetinaPool.usf:281-282
Region
Grid - Pixels - Purpose - Source
Full-Frame Periphery
4×4 = 16 regions - Entire image - Global scene awareness
NFGRetinaPool.usf:367-401
Fovea (Center)
8×8 = 64 regions - Configurable subset - Detail in gaze direction
NFGRetinaPool.usf:334-365
Offset
Count - Content - Source
0-1919
24 channels × 80 - Regional statistics (Fovea + Periphery)
NFGRetinaPool.usf:342-365
1920-2047
128 - Global image statistics
NFGRetinaPool.usf:637-699
Ch
Feature - Range - Description
0
meanD - [0,1] - Mean depth
1
meandD - [-1,1] - Mean depth change
2
meanGrad - [0,1] - Mean depth gradient
3
varD - [0,1] - Depth variance
4
depthOn - [0,1] - Approaching signal
5
depthOff - [0,1] - Receding signal
6
meanY - [0,1] - Mean luminance
7
meanGn - [0,1] - Mean edge strength
8
varY - [0,1] - Luminance variance
9
lumaOn - [0,1] - Brightening signal
10
lumaOff - [0,1] - Darkening signal
11
meanRG - [-1,1] - Red-green opponency
12
meanBY - [-1,1] - Blue-yellow opponency
13
absRG - [0,1] - Color saturation (RG)
14
absBY - [0,1] - Color saturation (BY)
15
meanInc - [0,1] - Surface inclination
16
meanEdge - [0,1] - Normal discontinuity
17
varEdge - [0,1] - Edge variance
18
DoGD - [-1,1] - Depth center-surround
19
DoGY - [-1,1] - Luma center-surround
20
motionMag - [0,1] - Motion magnitude
21
motionSin - [-1,1] - Motion direction (sin)
22
motionCos - [-1,1] - Motion direction (cos)
23
orientEnergy - [0,1] - Orientation strength
Offset
Feature - Description - Source
0-3
Depth - min, max, mean, variance
NFGRetinaPool.usf:638-641
4-7
Depth Delta - min, max, mean, variance
NFGRetinaPool.usf:643-646
8-11
Luminance - min, max, mean, variance
NFGRetinaPool.usf:648-651
12-15
Gradient - min, max, mean, variance
NFGRetinaPool.usf:652-656
16-23
Color (RG/BY) - min, max, mean, variance each
NFGRetinaPool.usf:658-666
24-31
Surface (Inc/Edge) - min, max, mean, variance each
NFGRetinaPool.usf:668-676
32-35
Depth Gradient - min, max, mean, variance
NFGRetinaPool.usf:678-681
36-38
Threshold Ratios - near, far, salient
NFGRetinaPool.usf:683-685
39-42
Abs Color - mean, variance (RG, BY)
NFGRetinaPool.usf:687-690
43-46
Motion - mean, variance, max, ratio
NFGRetinaPool.usf:692-695
47-127
Reserved - Zero-padded for alignment
NFGRetinaPool.usf:697-699
Buffer
Content - Purpose - Source
RetinaPrevDepthTex
Previous frame depth - dD computation
NFGVisionBackend.h:98
RetinaPrevGnTex
Previous gradient energy - Reichardt correlator
NFGVisionBackend.h:99
RetinaPrevLumaTex
Previous luminance - dY computation
NFGVisionBackend.h:100
bRetinaPrevValid
First-frame guard - Skip temporal on frame 0
NFGVisionBackend.h:107
GazeYaw
±MaxClampYawDeg - Horizontal look direction
NFGVisionSceneComponent.cpp
GazePitch
±MaxClampPitchDeg - Vertical look direction
NFGVisionSceneComponent.cpp
GazeRoll
±MaxClampRollDeg - Camera tilt
NFGVisionSceneComponent.cpp
DeltaMode
bool - Outputs are rates vs absolute angles - FGazeControlParameters
SmoothingTau
seconds - Exponential smoothing time constant - FGazeControlParameters
MaxDistanceCm
20000 - Depth normalization range (200m) - nfg.eye.max_cm CVar
BlackClipCm
0 - Near clip distance - nfg.eye.black_cm CVar
Gamma
1.6 - Depth gamma correction - nfg.eye.gamma CVar
S_RG, S_BY
0.3 - Color opponency sensitivity
NFGRetinaPreprocess.usf
S_G
0.1 - Gradient sensitivity
NFGRetinaPreprocess.usf
S_N
0.5 - Normal edge sensitivity
NFGRetinaPreprocess.usf
T_NEAR
0.1 - Near threshold for counting
NFGRetinaPool.usf
T_FAR
0.9 - Far threshold for counting
NFGRetinaPool.usf
NOISE_FLOOR
0.001 - Motion noise rejection
NFGRetinaPool.usf
Pass
Shader - Threads - Description
1. GBuffer Gather
NFGVisionGBufferGather.usf - 8×8×1
Extract Depth/Normals from SceneTextures
2. Retina Preprocess
NFGRetinaPreprocess.usf - 8×8×1 - Per-pixel feature extraction → 6 textures
3. Prev Update
NFGRetinaPrevUpdate.usf - 8×8×1 - Copy current → temporal buffers
4. Retina Pool
NFGRetinaPool.usf - 8×8×1 - Regional statistics → 2048 floats
Texture
Content (RGBA)
RetinaA
D, dD, Y, Gn
RetinaB
RGn, BYn, Inc, Nedge
RetinaC
DepthOn, DepthOff, LumaOn, LumaOff
RetinaD
DoGDepth, DoGLuma, OrientEnergy, Reserved
RetinaE
DoGDepthMed, DoGDepthCoarse, DoGLumaMed, DoGLumaCoarse
RetinaF
Orient0, Orient45, Orient90, Orient135
Input
Output - Compression
128×128×4 channels = 65,536 floats
2,048 floats - 97% reduction
NFGVision Retina
Standard CNN Vision
ON/OFF temporal pathways
Static gradients only
Fovea + Periphery pooling
Uniform resolution
Color Opponency (RG/BY)
RGB channels
Reichardt Motion Correlators
Optical flow (expensive)
Fixed 2048 output (stable for evolution)
Variable feature maps
No backpropagation needed
Requires labeled training
GPU Compute Shaders (UE5 RDG)
External frameworks (PyTorch/TF)
Model persistence
Node.js backend persists models, architectures, runs, and telemetry in MongoDB
NEUROFLUX_GENESIS_BOOK_EN.html:3.9
REST/WebSocket uploads
Engine clients upload models via REST/WebSockets
NEUROFLUX_GENESIS_BOOK_EN.html:3.9
Architecture validation
Server validates architecture and weights on upload
NEUROFLUX_GENESIS_BOOK_EN.html:3.9
Hash deduplication
Computes hashes to deduplicate uploads
NEUROFLUX_GENESIS_BOOK_EN.html:3.9
Training queues
Training queues let distributed workers process jobs and report results
NEUROFLUX_GENESIS_BOOK_EN.html:3.9
Cross-world learning
Many worlds evolve a shared model family and redistribute best configurations
NEUROFLUX_GENESIS_BOOK_EN.html:perspective
Metadata capture
Uploads include architecture, weights/biases, input/output mappings, fitness, and hardware stats
NEUROFLUX_GENESIS_BOOK_EN.html:6.5
REST/WS analytics
Exposes models and telemetry via REST/WS APIs for analysis and dashboards
NEUROFLUX_GENESIS_BOOK_EN.html:6.5
Cross-game reuse
Persisted models enable reuse across games or simulations
NEUROFLUX_GENESIS_BOOK_EN.html:6.5
Durchbrüche
Ausgewählte Entwicklungen mit echter Differenzierung.
CMA-ES Eigenzerlegung, Crossover- und Mutations-Kernels sowie Hall-of-Fittest-Orchestrierung für große Populationen.
Per-Neuron-Statemachines mit evolvierbaren Dynamiken jenseits statischer Layer.
STDP-Plastizität kombiniert mit vier Neuromodulator-Kanälen (DA/NE/ACh/5-HT), die Lernen formen.
GPU-Raycasting plus Retina-Style GPU-Feature-Extraktion für autonome Wahrnehmung.
Mehrstufige GPU-Rollouts mit Action-Varianten zur Echtzeit-Bewertung von Outcomes.
Node.js- und MongoDB-Backend, das Modelle und Telemetrie persistiert, Uploads validiert und Trainings-Queues für weltweit vernetztes Lernen orchestriert.
Diligence
Wir bieten tiefe technische Sessions, Build-Zugang und Roadmap-Briefings für Investoren und Studios.